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ABSTRACT

Robarge, Tyler W. MSAE, Purdue University, August, 2005. Laminar Boundary-
Layer Instabilities on Hypersonic Cones: Computations for Benchmark Experiments.
Major Professor: Steven P. Schneider.

Although significant advances have been made in hypersonic boundary-layer tran-
sition prediction in the last several decades, most design work still relies on unreli-
able empirical correlations or wind-tunnel tests. Codes using the semi-empirical e?v
method will need to be well verified and validated before being used for expensive
flight vehicles. The code package STABL and its PSE-Chem stability solver are
used to compute first and second-mode instabilities for both sharp and blunt cones
at wind-tunnel conditions using a Navier-Stokes mean-flow solution. Computations
are performed for Stetson’s 3.81 mm nose-radius cone, a sharp cone at Mach 3.5,
a large-bluntness cone at Mach 8, and sharp and blunt cones corresponding to the
experiments of Rufer. Comparisons to previous computations by other researchers
show differences on the order of 10% in local amplification rates and frequencies,
but better agreement is obtained for the transition location. Many issues are ex-
amined for verification and validation, including the laminar transport properties,
the freestream boundary conditions, and the effect of freestream thermal nonequi-
librium. This work helps to verify and validate STABL, extend its applicability to
low-temperature flows, and develop the methodologies for using STABL.



1. Introduction

Despite more than fifty years of hypersonics research, many critical areas are still
poorly understood [1]. Hypersonic flight remains a top priority in defense research,
as any vehicle that ascends to or from space must traverse the hypersonic regime. An
Air Force Scientific Advisory Board study found that hypersonics will be necessary
to fulfill the Air Force’s vision of “controlling and exploiting the full aerospace con-
tinuum” [2]. The reduction in forward-deployed forces since the end of the Cold War
has increased the need for hypersonics, as a need remains to be able to strike high-
value, time-critical targets anywhere in the world in minutes or hours [3]. Hypersonic
flight is a key component of most plans to provide that capability.

The location and extent of laminar-to-turbulent boundary-layer transition is a
critical parameter in hypersonic vehicle design [1]. The transition location directly
affects estimates of aeroheating and skin friction drag, which in turn affect heat
shield weight and materials, range, and payload capacity. Infrared and radar sig-
natures, as well as communications with the vehicle, are also affected by transition.
Vehicle designers can now compute the laminar and turbulent aeroheating with good
accuracy; in many cases, the largest uncertainty in calculating the total heat flux to
the vehicle results from the estimates of transition location [4]. As an example, the
Defense Science Board found that estimates for transition location on the National
Aerospace Plane ranged from 20% to 80% of the body, and the estimate used could
affect the vehicle gross takeoff weight by a factor of two or more [5]. Transition is es-
pecially important on vehicles that spend a significant amount of time in high-speed,
high-altitude atmospheric flight, such as hypersonic cruise vehicles and manuevering
reentry vehicles.

Figure 1.1 shows a magnified portion of a shadowgraph of a sharp cone model in

free flight at Mach 4.3 in the Naval Ordinance Lab ballistics range. This photograph,
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Figure 1.1: Shadowgraph of a sharp cone in free flight at Mach 4.3. Picture first
published by Schneider [4].

first published by Schneider [4], illustrates many of the salient features of hypersonic
boundary-layer transition. The boundary layer on the upper surface of the cone is
mostly laminar with discrete turbulent spots. Small shocks are visible forward of the
spots. The visible lower surface is entirely turbulent, and acoustic noise can be seen
radiated from the boundary layer. A vast difference in the boundary-layer thickness

between the laminar and turbulent states is evident.

1.1 Transition Prediction Methods

The overall transition process is not well understood [6]. Environmental distur-
bances, which could come from either the freestream or the body, enter the boundary
layer through a process called receptivity. These disturbances amplify through one
or more of many possible mechanisms. This thesis will consider only first and sec-
ond mode amplification, but roughness-induced transition, cross-flow vortices, and
Gortler instabilities are all examples of other mechanisms that are dominant under
various conditions. As the disturbances amplify, they will eventually breakdown in

a nonlinear fashion, form turbulent spots, and develop into full turbulence.



Despite this complex nature of transition, transition prediction for vehicle design
has historically relied on empirical correlations and extrapolations from wind tunnel
experiments. A large body of empirical and semi-empirical correlations exist; many
of these were cataloged and evaluated by Berkowitz et al. [7]. One popular correlation

is shown in Equation 1.1.
Reg _
M,

The constant C is specified based on empirical data and is usually in the range of

C (1.1)

100-500. Transition is assumed to occur when the local boundary-layer properties
satisfy Equation 1.1. The designers of the Space Shuttle used Equation 1.1 and
applied a correction based on the surface roughness caused by misaligned Thermal
Protection System tiles [8].

As Berkowitz et al. showed, many correlations exist, and most fit some subset
of the experimental data. However, no empirical model can accurately predict tran-
sition for a general dataset [1]. In fact, Schneider [9] has shown that for a general
data set the predictions generated by different correlations scatter by a factor of 3
in momentum thickness Reynolds number and an order of magnitude in arc length
Reynolds number. None of the correlations can be expected to provide accurate
predictions for configurations and conditions outside of the database used for their
development.

Extrapolating from wind tunnel experiments is also problematic. Transition de-
pends on a multitude of factors, including local Mach number, flow enthalpy, unit
Reynolds number, surface roughness, reacting chemistry, and mass ablation [6]. Any
single ground facility can only match a small subset of these parameters, and even
then determining the location and extent of transition in an accurate and consistent
manner is not a trivial task [1]. Further complicating matters, the acoustic noise
produced by the turbulent boundary layer on the walls of conventional hypersonic
wind tunnels produces a freestream disturbance environment markedly different from
that of flight. These disturbances have been shown to affect not only the transition

location, but also the parametric trends [10]. This has led to a push for the devel-



opment of ‘quiet’ tunnels, but that itself is an exercise in boundary-layer transition
prediction and control. There are currently no hypersonic wind tunnels that are
quiet at significant Reynolds numbers, anywhere in the world [11].

Given the constraints of ground testing, the only situation that can accurately
capture all of the relevant flow-field characteristics is flight. However, flight testing
usually only permits surface measurements, and recovery of the actual vehicle is
often impossible. Flight testing is extremely expensive, and sufficient funds are not
likely to be available in the forseeable future.

Much research in hypersonic boundary-layer transition has been accomplished in
the last fifty years. In particular, Linear Stability Theory (LST) [12] and the Parab-
olized Stability Equations (PSE) [13] have been coupled with the semi-empirical e
method to predict transition on simple geometries, such as cones and flat plates.
More details on all of these methods will be provided in Chapter 2. Recently, Ma-
lik [14] showed that transition locations could be correlated on two hypersonic flight
tests using the PSE for chemically reacting flows and the e method. Although
these methods have shown success for many applications in research settings [6], hy-
personic vehicle designers are hesitant to stake expensive programs on these newer
methods until they have been shown to be better validated, faster, and simpler
to use. Given these constraints, Oberkampf and Blottner [15] assert that reliable
engineering techniques for transition prediction are currently lacking.

Since hypersonic vehicles remain a priority, and current design methods are in-
adequate for many applications, an improved method for hypersonic boundary-layer
transition prediction is needed. The overall project that this work is a part of aims
to provide mechanism-based methods that are suitable for design purposes, includ-
ing predictions using the PSE and the ¥ method. The present work is concerned
primarily with the verification and validation of the 2D /axisymmetric version of the
PSE/e" code package. This code package will not be the final solution to the prob-
lem of transition prediction, as the only mechanisms currently included are the first

and second mode, and the effects of receptivity and nonlinear breakdown are treated



empirically. However, it is hoped that the inclusion of more of the relevant flow
physics will result in a more accurate and more robust method than those which are

currently in use.

1.2 Verification and Validation

Before computational results can be used to make important decisions, measures
must be taken to ensure confidence in the accuracy of the predictions. Although this
issue has received considerable attention in recent years, developments in this area
have not kept pace with increases in code size and complexity and the increasing
reliance on computations to reduce the number and scope of wind tunnel and flight
tests [16]. Attention to code quality, implementation, and the applicability of the
algorithms and assumptions is required throughout all stages of code creation and
use, but even this does not ensure that a code is free from defects. As an example,
an inexperienced user can get incorrect results from a validated code.

Blottner [17] defines code validation as solving the right governing equations and
code verification as solving the governing equations right. Examples of validation
include confirming the accuracy of the assumptions made, such as when using the
Euler instead of the Navier-Stokes equations, or comparing the accuracy of the clo-
sure models throughout the relevant parameter space. Verification means evaluating
the accuracy of the numerical procedures used to solve the governing equations. Ex-
amples of verification include checking for general programming errors and ensuring
that results are converged and grid independent. Code validation can only be ac-
complished by detailed comparisons to experimental data [18], and the validation of
applicable equations and models is a responsibility of the community at large. In
general, a code must be verified before it can be fully validated.

Oberkampf and Blottner [15] divide the sources of physical modeling errors into
three categories: the partial differential equations (PDEs), the closure models, and

the boundary conditions. The set of PDEs analyzed must be appropriate for the



flow phenomena of interest. In addition, the accuracy of the solution depends not
just on the continuum mathematical model used to describe the flow, but also on
the accuracy of the discrete approximation used to solve that model. The closure
models must be accurate and valid for the full parameter space of temperature, den-
sity, etc. The boundary conditions are arguably the hardest to accurately model, as
this requires detailed knowledge of the inflow and outflow profiles and disturbance
spectra. This is rarely available, even in careful experiments designed for code val-
idation. Aeschliman and Oberkampf [19] provide a good description of the type of
experimental and computational procedure necessary to rigorously validate a code.

Verification is a difficult task, and it is never fully completed. Hatton and
Roberts [20] found from a study of seismic data-processing software packages that
numerical disagreement among commercially available codes grows at about 1% in
average absolute difference per 4000 lines of code, and that the Fortran codes had a
static fault rate of 6 per 1000 lines of code. These errors among the various packages
examined led to results that were all reasonable but subtly different, making it im-
possible for even trained scientists to evaluate which results were the most accurate.
Given that these results were obtained for a mature, highly competitive field, where
the algorithms are well estabilished and over fifteen independent packages exist to
perform the same function, it is highly probable that the situation is worse for hyper-
sonic transition prediction, where funding is insufficient to support many competing
products.

Several approaches exist for code verification, including grid refinement studies,
varying the boundary conditions, solving problems that have an analytical solution,
and comparing results with previously verified codes [16,18]. Grid refinement studies
and comparisons with other codes will be used in the present effort. This work

expands on previous verification and validation work by Johnson and Johnson et

al. [21-24].



2. Code Description

The computations presented in this thesis were performed using the STABL code
package [24]. STABL is designed to be a comprehensive boundary-layer stability-
analysis and transition-prediction tool, and it includes a mean flow code, a stability
code, and other utilities such as a Graphical User Interface (GUI) and a grid gen-
erator. STABL is modular in nature, allowing individual components to be used

instead of the whole package.

2.1 History

The heart of STABL is its stability code, PSE-Chem. PSE-Chem was written
by Heath B. Johnson as part of his Ph.D. research under Professor Graham Candler
at the University of Minnesota in the late 1990s. The original PSE-Chem was a
research code with a very utilitarian user interface and very little documentation
apart from the extensive comments within the source code. The Navier-Stokes code
DPLR2D [25], written by Michael Wright, another of Professor Candler’s former
students, was used for the mean flow calculations.

After completing his degree, Johnson began improving the PSE-Chem code and
the other components to add new capabilities and to make them more user-friendly.
When the author began using the code package in December of 2003, he was the
first individual outside of Professor Candler’s research group to use the code. At the
time, the user’s manual was approximately fifteen pages long, a minimal GUI was in
place, and compiling the codes required manually editing the makefiles to configure
system-specific variables.

Over the course of the next eighteen months, the author served as the primary

tester for new components and features released by Dr. Johnson. Many improve-



ments were made to the package, allowing for a much easier learning curve for new
users. A large percentage of these improvements directly resulted from suggestions
or ideas raised by the author. Over the successive months, a script was added that
allows a user to answer a series of questions to configure the system-specific vari-
ables, which mostly eliminated the need to edit the obscure makefiles. The GUI was
expanded and improved, such as through the addition of a flow analysis tool to allow
for easier interpretation of mean flow results. Algorithm changes, detailed in later
chapters, were made to provide more accurate and robust results.

In March of 2004, version 1.1 was released, and in April of 2004, the package
was renamed to Stability and Transition Analysis for hypersonic Boundary Layers
(STABL). The computations presented in this thesis were performed using versions
of STABL ranging from 1.26 to 1.29.4. The ongoing development of STABL made
obtaining all results with a consistent version impractical. Additional details about
STABL can be found in the STABL Program Reference [26] and in Johnson and
Candler [24].

2.2 Major Components of STABL
2.2.1 Grid Generator

The grids used for the mean flow solutions were created using the grid generator
included with STABL. The model surface and outer boundaries were each specified
using a single arc section and one or more line segments. In the case of a sharp
cone, only line segments were used. As the mean flow solver uses a shock capturing
scheme, the domain outer boundary had to be carefully defined to closely follow the
shock shape to minimize the number of grid lines crossing the shock. Since the shock
shape is not known «a priori, an iterative approach was used in which a coarse, poorly
fitted grid was used to obtain a solution, and the grid parameters were adjusted until

the outer boundary of the new grid matched the shock shape in the original solution



with a small offset. A second mean flow solution was then obtained using the new
grid parameters with a higher mesh density.

The lines of constant 7 were constrained to be always normal to the wall. This is
necessary within the boundary layer for stability analyses. The distribution of points
on the body surface was specified, and the distribution on the outer boundary was
determined by the wall-normal requirement. For blunt nose grids, the surface spacing
was uniform on the spherical portion of the nose, and a form of exponential stretching
using two segments was employed to expand the spacing downstream.

The lines of constant j were constructed by interpolating between spacings spec-
ified at the upstream and downstream boundaries. Exponential stretching was used
to cluster points within the boundary layer. An experiment was conducted in which
grid points were clustered at both the wall and the boundary-layer edge. A mean
flow solution was analyzed to give the edge location, and that data was fed along
with the axial point distribution into the commercial software GRIDGEN. The grid
was constructed in GRIDGEN and exported, and the resulting file was converted to
the format required by the mean flow solver. The process was extremely cumber-
some, and no significant difference was seen in the stability results. The large total
number of grid points used reduced the need for more advanced clustering schemes.

Figure 2.1 shows examples of typical grids for both blunt and sharp cones. For

clarity, only every tenth point is shown, and the range is limited to the nosetip region.

2.2.2 Mean Flow Solver

A modified form of the mean flow solver DPLR2D is included with STABL.
DPLR2D solves the finite-volume axisymmetric Navier-Stokes equations for real gas
flows in chemical and thermal nonequilibrium using a general chemistry model.

DPLR2D is based on the data-parallel line relaxation method, described by
Wright et al. [25]. The use of an implicit method allows for rapid convergence of

the stiff equation set that results from the vastly different length scales encountered
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Figure 2.1: Representative grids for blunt and sharp cone cases. The range is limited

to the nosetip region, and only every tenth grid point is shown for clarity.

in high Reynolds number flows. DPLR2D takes advantage of the structured mesh
to provide for efficient interprocessor communication without explicit domain de-
composition. The resulting method combines the parallelization of the data-parallel
lower-upper relaxation method with the high cell aspect ratio convergence prop-
erties of the Gauss-Seidel line relaxation method. DPLR2D parallelizes extremely
efficiently, allowing for very large problem sizes constrained primarily by available
Imemory.

A modified form of Steger-Warming flux vector splitting is used to give an accu-
rate solution within the boundary layer. The original flux vector splitting method
proposed by Steger and Warming [27] was developed primarily for the solution of
inviscid flows. MacCormack and Candler [28] showed that flux splitting causes prob-
lems in boundary layers through either abnormally large numerical mixing or a ficti-
tious pressure gradient. Their modification makes the method much more accurate

within boundary layers. Second order accuracy is used in both the streamwise and
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wall-normal directions, but a limiter switches the algorithm to first order accuracy
near the shock.

DPLR2D has excellent convergence properties. The highest stable Courant-
Friedrichs-Lewy (CFL) number begins near one and rapidly increases as the solution
converges. A set of CFL numbers can be specified in the input file, and a suggestion
by the author led to a modification to allow a user to change the CFL number on-
the-fly, which proved helpful when working on a time-sharing system. Stable CFL
numbers of at least 10,000 are attainable, although 2,000 was usually the maximum
used to obtain solutions for this thesis. The maximum stable CFL number decreases
with increasing mesh density and aspect ratio, so DPLR2D offers the option to freeze
a portion of the solution from the stagnation point to a specified distance once that
portion is sufficiently converged. This freezing stops the iterations in the specified
area, which eliminates the highest aspect-ratio cells from the solution space, allowing
for higher CFL numbers and faster convergence of the downstream section. Although
this option is helpful, it was not used for most of the cases presented in this thesis
since it was easier to let the solution run overnight unattended. This option will
probably be more beneficial for design purposes when the amount of analysis time
needed for any given configuration is less.

Boundary conditions are specified at the freestream, outflow, and wall. At the
wall, a no-slip condition is imposed along with requirements for zero wall-normal
pressure gradients and mass concentration gradients. Either an adiabatic wall or
a specified wall temperature was assumed, as indicated for each individual case.
The Mach number, static density, static translational and vibrational temperatures,
and species mass fractions are specified in the freestream. The inflow and outflow
boundaries are supersonic except in the boundary layer. A zero gradient condition
is applied at the outflow boundary. Zero gradient is also assumed along the outer
domain boundary to ensure relaxation of the flow variables.

Real gas effects are modeled following the method of Candler and MacCor-

mack [29]. These effects include non-equilibrium chemical reactions and thermal
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Figure 2.2: Typical RMS residual and CFL behavior for the mean-flow computations
described in this thesis.

non-equilibrium and have been shown to be critical factors in obtaining accurate
predictions of boundary-layer stability and transition for high enthalpy flows [21].
For the cases presented here, a five-species air model consisting of Ny, Oy, N, O,
and NO was used with the standard freestream mass fractions of 76.7% N, and
23.3% Oy (79% Ny and 21% O by volume) [24]. Thermal equilibrium was assumed
in the freestream except where otherwise specified. Section 3.2.1 gives a detailed
discussion of the transport properties used. Stoke’s hypothesis is used for the bulk
viscosity. Equilibrium constants and other properties are taken from the NASA ther-
modynamic data file for the CEA program [30]. The stability solver also used this
chemistry modeling.

The residuals were checked in two stages to ensure iterative convergence. DPLR
prints a convergence file that includes the RMS residual based on the density. That
value was monitored during the run, and a typical convergence history can be seen

in Figure 2.2. A residual drop of approximately 14 orders of magnitude is present.
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The spikes within the first 5000 iterations are thought to be due to fluctuations in
the location of the shock relative to the grid lines. The CFL number started small
but was rapidly increased by five orders of magnitude. As a second check on the
convergence, after the RMS had flattened, contour plots of the residual were plotted
using an exponential scale to look for any local spots of higher residual and to ensure

that the solution was fully converged on the aft end of the body.

2.2.3 Stability Solver

The code PSE-Chem is used to analyze the stability of the laminar mean flow
profiles. PSE-Chem uses the linear PSE coupled with the e method to produce
transition predictions. Since the PSE constitute an initial-boundary-value problem,
the wavenumber and eigenfunction at the starting location are obtained from LST.
A summary of the relevant equations and their derivation will be given here for
familiarization. The full derivation used in PSE-Chem is given by Johnson [23].

The stability equations are obtained from the Navier-Stokes equations by first
decomposing the instantaneous flow into a mean and a fluctuating component,
g = g+ ¢', where ¢ is any flow variable. This decomposed form is substituted into
the Navier-Stokes equations, and the mean flow equation is subtracted, resulting in
the disturbance equation given in Equation 2.1, where ¢ is the vector of disturbance

quantities given in Equation 2.2.

op 0 00 09 ¢ ¢
—+A—+B—+C—+D Ver=—5 + V=
ot TAgr TP, TG TP Vg T Vg
¢ ¢ 0*¢ ¢

Ve + Vg + Voo m=—7— + V=7 +F"=0 (2.1

tVaga T Y0xoy tVagr, TV Oyoz + (2.1)

o= (pllapIQ’ e ’p;zs’ul’vlaw,aTlaTqﬁ)T (2'2)

The terms in the Jacobian matrices I', A, B, ..., V,, depend only on the known mean-

flow variables and their derivatives, and all of the terms that vary nonlinearly with

¢ are contained in the vector F™.
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The disturbance quantities are assumed to be traveling waves of the form given

by Equation 2.3.
¢ = x(&m)e =" (2:3)

Here ¢ and 7 are the body-tangential and body-normal computational coordinates,
k is the real spanwise wavenumber, z is the distance in the spanwise direction, and
w is the real frequency.

When Equation 2.3 is substituted into Equation 2.1, the derivatives are cal-
culated, and the equation is converted to computational coordinates, the result is

Equation 2.4, where the Jacobians are given in Reference [23].

~0¢  ~0¢ ¢ 5 ¢ 5 0% n_
D¢+Aa—§—|—B——|—V 852 V,maQ—i—Vgnaéa +F" =0 (2.4)
X is decomposed using Equations 2.5 and 2.6,
= (& A(E) (2.5)
A(g) = €"® (2.6)

where dfl/d§ = «(§), « is the body-parallel wavenumber in computational coordi-
nates, and 1 is the shape function vector. This allows for all of the ellipticity in the
wave function to be retained while parabolizing only the shape factor. After further
substitutions and rearranging, the result is the disturbance equations in computa-

tional coordinates,

O aw oo aw " a%p

To arrive at the PSE, the terms ‘7&% and ‘7&,% are neglected. The distur-
bances are assumed to be small, allowing the nonlinear terms that comprise F" to

be neglected as well. The resulting terms give the linear PSE,

O SO 0%
D¢+Aa£+B + Vs =0 (2.8)

The PSE constitute an initial boundary value problem, and the marching pro-

cedure requires an initial wavenumber solution, which is obtained from the linear
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stability equations. These are obtained by assuming a quasi-parallel flow, which
means that ¢ = ¢(n) and da/d§ = 0. Equation 2.9 gives the resulting linear stabil-

ity equations.

oYy =~ 0%
— + Vi =
on " on?
These equations are solved using the global and local two-step procedure of Ma-

lik [31].

Dy + B 0 (2.9)

In the global procedure, the approximation that o? = 0 is made. This results
in a generalized eigenvalue problem for the complex wavenumber a. Second-order
central differences are used to discretize the n derivatives. The boundary condi-
tions of zero velocity and temperature disturbances and zero disturbance pressure
gradient are imposed at the wall. Zero disturbances are imposed for all variables
at the outer domain. The generalized eigenvalue problem is solved using the LZ
algorithm [32]. The result is a spectrum of approximate eigenvalue guesses for the
complex wavenumber c.

The local procedure is then used to refine the wavenumber guesses produced
by the global method. Since the global process is computationally expensive, it
is run for a small number of frequencies and PSE-Chem interpolates those results
to intermediate frequencies. Discretization is accomplished through fourth-order
central differences at the interior points and second-order central differences at the
boundaries. A non-homogeneous boundary condition must be imposed to prevent
arriving at the trivial solution for Equation 2.9. The 4 = 0 condition is replaced with
a normalization condition for the density fluctuation p = pnorm = pPoo- The resulting
system is a block pentadiagonal matrix system containing terms in both o and o?.
Using the initial guess provided by the global method, iterations are performed on «
using the secant method until ‘7&':1 is reduced to zero. This results in the complex
wavenumber « and the disturbance eigenfunction ¢ at the starting location.

The PSE are solved using the method of Herbert [13]. The variables o and ¢ are
updated simultaneously at each marching step. The boundary conditions of LST are

used, but without the normalization of p. The disturbance kinetic energy is used to
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normalize the integrals used in the wavenumber updates. Iterations are performed
until the wavenumber has converged to within some tolerance, and that solution is
used as the starting guess for the next marching station. Further details of the PSE
solution procedure implemented in PSE-Chem are given in Reference [23].
Transition prediction is accomplished using the eV method. The value eV, where
N is given by Equation 2.10, represents the total growth factor of a small amplitude
initial disturbance.
N = gadf (2.10)

o
For the PSE, the disturbance growth rate o is obtained from Equations 2.11 and 2.12.

Here the domain of integration, €2, extends in the body-normal direction from the

surface to the outer boundary.

1 dF
= - + —— 2.11
7=t e (211)
E= / Pl + 1o + [ ) de (2.12)
Q

This differs from LST, where only the contribution of -q; is used to calculate N
factors, as opposed to including the change in the disturbance shape factor. The
disturbance kinetic energy is only one option available for calculating the amplitude.
Johnson [26] showed that the use of the massflux can produce slightly different
results, but the ability to perform the calculations either way is useful for comparisons
with other results.

Mack [12] showed that the disturbances with the form given in Equation 2.3 can
have several modes. The first mode is analogous to the Tollmien-Schlichting waves
of incompressible flow. It is damped by wall cooling and is most amplified when it
is at an oblique angle. The second mode can be thought of as a trapped acoustical
wave. It is amplified by wall cooling, and it is most amplified when it is 2D. Higher
modes exist, but they always have lower amplification rates than the first or second
mode. Only the first and second modes will be considered in this thesis.

The stability solver uses a different grid than the mean flow solver. Before be-

ginning the global, local, and PSE marching steps, the mean flow solution at each
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streamwise location is linearly interpolated onto a grid with parameters specified in
the PSE-Chem input file. This grid can have standard hyperbolic or exponential
stretching, or it can cluster points at both the wall and edge using either hyper-
bolic or cosine-exponential stretching. This interpolation will slightly decrease the
accuracy of the mean-flow variables, but the effect of this change was not examined.
No significant difference was found in the results obtained with the various available
stretching methods.

PSE-Chem is designed for parallel processing using the MPI message passing
libraries. The global solution procedure divides the frequencies to be searched among
the available processors. The local procedure divides the guesses to be refined for a
given frequency among the processors. The linear PSE marching does not parallelize
as well, but this step is normally much faster than the global or local steps.

The majority of the results presented in this thesis were obtained using Perl
scripts to automatically run many cases sequentially, label the cases logically, and
save the relevant results. Appendix A gives an example of a script to calculate N
factors for combinations of starting location, w, and . These scripts use functions
from the scripting library recently added to STABL. This is a powerful and robust
methodology, but it is inefficient. The computations performed for this thesis gener-
ally used a wide, but fairly coarse, band of parameters. This ensured that the most
unstable modes were captured, but the resolution near the most unstable modes was
not always as good as desired. To increase the resolution with this system without
resulting in an unreasonable number of cases would require either better knowledge
of the expected results to reduce the parameter bandwidth or the development of
some sort of adaptive refinement algorithm. With the current system, the best solu-
tion would probably be to run a wide, coarse parameter matrix, analyze the results,
and then run a second set of cases with a finer parameter matrix centered on the

critical modes.
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2.3 Equipment Used

The computations described in this thesis were performed on one of two systems.
A Dell Precision 650 workstation with two 3.06 GHz Intel Xeon processors and 2
GB of RAM was used for some of the computations and all of the post-processing.
In addition, access to the ‘Rogue’ Beowulf cluster was provided by Sandia National
Laboratories. This cluster has 247 nodes with two 3.06 GHz Intel Xeon processors
on each node, connected by 2 Gb/s Myrinet connections, and 160 nodes with two 2.4
GHz Intel Xeon processors on each node, connected by 100 Mb/s Ethernet connec-
tions. All nodes on Rogue had 2 GB of RAM. Both the local workstation and Rogue
used the Red Hat 9 Linux operating system. The workstation had a 2.4.20-31.9smp
kernel, and Rogue had a 2.4.20-30.9smp kernel with GPFS patches applied. The
codes were compiled using the Portland Group pgf90 and pgcc compilers. Message
passing was accomplished using the MPICH MPT libraries.

Both mean flow and stability calculations were performed on both systems. No
significant difference was seen between the results on either system. Solutions with
150,000 cells, which were typical of the size used in this thesis, could be obtained
in approximately four hours on sixteen processors, and the solution time scaled
approximately linearly with the number of processors. The residual typically dropped
by 12-14 orders of magnitude. If necessary, the computational time required could be
significantly decreased by freezing the solution and increasing the CFL number more
aggressively. The global and local solutions each took approximately one minute per
frequency per processor. The time required for sweeps over multiple combinations of
starting location, frequency, and spanwise wavenumber, as shown in Chapter 4, was
approximately 16 hours on two 2.4 GHz processors. A more advanced script using
an adaptive refinement scheme could significantly decrease the run time if necessary.

Appendix B provides a detailed description of the methods of operation used for

STABL as well as the lessons learned along the way.
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3. Second Mode Verification: Stetson’s Blunt Cone

Chapters 3 and 4 will present the results of computations that were performed to
verify and validate the ability of STABL to accurately compute instabilities and
predict transition. All of the cases are for wind-tunnel conditions. Wind-tunnel
cases were chosen for verification because a large body of previous computations
exists and to match the general conditions of the Rufer wind-tunnel experiments,
which have not been previously analyzed. The Rufer results will be presented in
Chapter 5. Since it is not always possible to predict which is the dominant mode,
computations for both the first and second modes were verified.

The second mode calculations in STABL were verified by benchmarking against
other codes since accurate experimental data were not available for validation. This
exercise uncovered a number of issues, including bugs, alternative algorithms, and
different transport property models. These discoveries led to changes that improved
the quality of STABL. However, this was not an ideal situation, as many of the
details of the other calculations are unknown. The methods used are not identical,
as STABL uses the PSE and is designed for chemically reacting flows, whereas all of
the benchmark codes use LST for perfect gas air flows. In addition, unknown errors
may exist in the various codes or their usage. These could account for the remaining

differences in the results.

3.1 Experimental Conditions

The conditions chosen for the exercise were those of the blunt cone experiments
of Stetson et al. [33] with the 3.81 mm nose radius. Stetson performed hot-wire
measurements in the boundary layer of a sphere-cone at 0° angle of attack and Mach

8 in Tunnel B at the Arnold Engineering and Development Center (AEDC). The test
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Table 3.1: Test conditions for Stetson et al. [33] blunt cone experiment for all com-

putations presented here.

Model Specifications

Half angle 7°
Length (m) 1.016
Base diameter (m) | 0.2495
Nose radius (mm) 3.81
Wall Temperature | Adiabatic
Freestream Conditions
Fluid Air
My 7.99
po (Pa) 4.0x10°
T, (K) 750
Poo (Pa) 410
Tw (K) 54
Poo (kg/m?) 0.0027
Reg, /ft 2.5x10°

conditions for all Stetson computations in this thesis are summarized in Table 3.1.

The freestream static temperature and density are required inputs for STABL, and

they were calculated from the specified flow conditions using the isentropic relations

and the perfect gas law. Further discussion of the input conditions will be given in

Section 3.2.2.

The Stetson et al. experiment has been analyzed by numerous other researchers

using many different codes, which makes it an ideal benchmark for wind-tunnel cases.

All of the other researchers used LST-based codes for stability calculations, as op-

posed to the PSE used in STABL. Malik et al. [34] performed the first computations.
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To compute the mean flow, they used a full Navier-Stokes solution for flow around
a sphere to provide an initial data plane for a Parabolized Navier-Stokes (PNS) cal-
culation on the cone frustum. Esfahanian [35] performed Thin-Layer Navier-Stokes
calculations using very fine grid spacing by the standards of the day. Kufner et
al. [36] performed a careful analysis of the sensitivity of the stability results to vari-
ous assumptions made in computing the mean flow. Results obtained by Stilla using
a second-order boundary-layer solver are included in Kufner et al. [36], as well as
in Reference [37]. Rosenboom et al. [38] used Kufner’s results as a basis for exam-
ining the effect of nose-tip bluntness on stability. More recently, Schneider [4, 39]
performed a detailed reassessment of the Stetson experimental data and performed
stability analyses using the mean flow generated by a boundary-layer solver. Es-
fahanian [40] performed additional computations using Stetson’s conditions to test
the accuracy of PNS mean flow solutions for stability applications. Lyttle et al. [41]
used a DPLR solver to analyze Stetson’s case with a particular emphasis on the wall
temperature distribution. Zhong [42] performed LST calculations as part of an effort
to analyze the flow using Direct Numerical Simulation.

Schneider [39] has shown that there are a number of open issues associated with
this experiment. The axial station s/r, = 175 is used for the vast majority of the
computations presented in the literature. However, Stetson’s data show considerable
nonlinearity at this station which will not be captured by a LST analysis. Overshoots
are present in the pitot-pressure profiles, which are thought to be due to interference
from the probe and have not appeared in any computation. Most researchers have
assumed the wall is adiabatic, but the measured surface temperature is about 20%
below the adiabatic temperature. The present work is not an attempt to resolve the
discrepancies between computations and experiments. Rather, the intent is to repli-
cate the computational results obtained with other codes to partially verify STABL.
The large body of independent computational data makes this case ideal for verifi-
cation, but these unresolved issues make complete validation from the experimental

data impossible.
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Figure 3.1: Amplification rate for Stetson’s blunt cone at s/r, = 175 with r, = 3.81

mm as computed by other researchers. Symbols are for identification only.

Most of the researchers mentioned above published plots of the amplification
rate at s/r, = 175. Figure 3.1 shows these results on a single plot. The data was
obtained by digitizing the figures in the references using the Un-Scan-It software
package. The figures were electronically scanned to high resolution, and then the
Un-Scan-It software was used to convert the graphical data to numerical data using
an algorithm that interpolates based on the pixel coordinates of the line and the
axes. The accuracy of the digitization is estimated to be on the order of the line
width.

The computations in Figure 3.1 agree much better with each other than they
do with the experimental data. This is most likely due to non-linearity and the
other issues discussed above. The average peak amplification rate based on the six

computations plotted is 14.4/m at a frequency of 129 kHz.
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3.2 Issues Addressed

A number of issues were addressed to try to improve the agreement between the
stability results of STABL and those of other researchers. Results incorporating the
effects of the lessons learned from all of these issues are presented in Section 3.3. The
following sections are intended to illustrate the incremental effect of each individual
issue. Therefore, each section should be viewed as distinct from the others, rather

than as a sequential progression of increasingly accurate solutions.

3.2.1 Laminar Transport Properties

The laminar transport properties are an essential component of any numerical
model. These properties are the viscosity for momentum transport, the thermal
conductivity for energy transport, and the diffusion coefficient for mass transport.
Accepted models exist for usage within normal ranges of temperature and pressure.
However, there is considerable subjectivity in determining the best model for very
high or low temperatures, and the best choice for one extreme is generally not the
best choice for the other. Lyttle and Reed [43] showed for high temperatures that
the transport properties employed can have a large impact on hypersonic stability
results.

The components of STABL were designed primarily for high enthalpy air flows,
such as those found in hypersonic flight or in shock tunnels. These flows are charac-
terized by extremely high temperatures, causing dissociation, ionization, and chem-
ical and thermal non-equilibrium, phenomena known collectively as real-gas effects.
Much more complicated flow models are required to accurately model these real gas
effects than for situations where perfect gas behavior can be assumed.

Conventional hypersonic wind tunnels obtain high Mach numbers in part by
lowering the static temperature in the test section to just above the condensation
point of nitrogen. This lowers the speed of sound, creating hypersonic flow at lower

freestream velocities than would be found in atmospheric flight at the same Mach
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number [1]. Tunnel B at AEDC and the Purdue Mach-6 Ludwieg Tube (M6LT) both
have freestream static temperatures below 60 K for standard operating conditions.
For slender bodies with highly oblique shocks, boundary-layer edge temperatures of
60-100 K are typical. For the STABL suite to be valid in the low enthalpy regime,
transport property models appropriate to that regime must be employed.

All of the computations cited previously were performed with a Sutherland vis-
cosity law. Not all of the references provide details about the thermal conductivity
modeling, but those that did specify the method assumed a perfect gas with a con-
stant Prandtl number. It is probable that those who did not specify their method
used this technique as well. Because all of the computations in the literature treated
the air as a single gas rather than a mixture, none included the effects of diffusion.
Due to the low temperatures involved, the production of monatomic species is neg-
ligible. The binary diffusion model should therefore not be a significant factor, and

its accuracy was not investigated.

Viscosity

STABL originally used Blottner’s [44] viscosity model for reacting flows to de-
termine individual species viscosities [23]. This model uses empirical curve fits of
the form given by Equation 3.1 to compute individual viscosities in kg/m-s for each
species in the mixture.

Uy = 0.16(Asln(T)—|—Bs)ln(T)+Cs (31)

The viscosity of the mixture is found by Wilke’s semi-empirical mixing law, given in

Equations 3.2-3.4.

= (3.2)
s=1 ¢5
p_s
X, Sl (3.3)



Table 3.2: Blottner’s Viscosity Curve Fit Coefficients

Coefficient | High Temp | Low Temp
Ay, 0.0268142 | 0.0089993
B, 0.3177838 | 0.6039338
Cn, -11.3155513 | -12.4453814
Ao, 0.044929 -0.0255541
Bo, -0.0826158 | 1.0503525
Co, -9.2019475 | -13.7080219

25

6=3 X, (1+ G i)
)

r=1 8(1 +
Two sets of the coefficients A, B,, and C; are given in Table 3.2. The high

(3.4)

M,
My

temperature set was published in Blottner et al. [44] and is valid over the tempera-
ture range 1000 K-30000 K. The low temperature set represents unpublished data
provided by Blottner (personal communication, October 2004) and is valid over the
range 100 K-10000 K. Values for the species NO, N, and O are given in Reference [44]
and are the same for both temperature ranges. These species have mass fractions
many orders of magnitude below those of Ny and O at wind tunnel temperatures,
and their viscosity modeling was not investigated.

The Sutherland law is the method most commonly used in CFD codes. This
model is based on the kinetic theory of gases, and it is known to be a good ap-
proximation in the temperature range 100 K—2000 K [15]. Its form is given by
Equation 3.5, where S is an effective temperature called the Sutherland constant

and g, and T,.; are reference values [45].

3
T \*Tos+5
- s (3.5)
Href Tref T+S
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Figure 3.2: Viscosity of air computed using various methods compared with experi-

mental data.

Figure 3.2 shows a comparison of the two methods given in Table 3.2 and the
Sutherland law plotted with the experimental data of Grieser and Goldthwaite [46]
and Matthews et al. [47]. Figure 3.3 shows a detail of the same plot at the low
temperature limit. The viscosity reported by Grieser and Goldthwaite [46] near 50
K is two orders of magnitude smaller than the next closest value. This was based on
one experimental measurement, and it illustrates the uncertainty that exists at very
low temperatures. The Blottner high temperature model is seen to differ greatly from
the experimental data at low temperatures. At 80 K, which is approximately the edge
temperature for the Stetson case, the Blottner model overpredicts the viscosity by
70%. The Sutherland law diverges from the empirical models above approximately
1900 K, as is expected based on the approximations made in its derivation [45].

Based on this analysis, STABL was modified to incorporate different viscosity
models for each temperature regime. STABL now uses the Sutherland law for low

temperatures, the high-temperature Blottner law for high temperatures, and the low-
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Figure 3.3: Viscosity models and experimental data for air at low temperatures.

temperature Blottner law for the intermediate range. Blending functions are used to
ensure a smooth transition between the laws. The resulting method is shown as the
STABL Blended curve in Figures 3.2 and 3.3. Agreement with the experimental data
and the form of the Sutherland Law used in the other computations is considerably
better.

It is important to note that there is considerably higher uncertainty in the exper-
imental data below 200 K [48]. Several models exist for this low temperature regime.
The Chapman-Enskog model [49] is based on the kinetic theory of gases and em-
ploys collision integrals to model the intermolecular forces. Keyes [50] and Maitland
and Smith [51] both proposed empirical curve fits, and Mack [12] proposed a model
hereafter referred to as the “Linear Sutherland Law” that is a linear extrapolation
of the Sutherland Law below the Sutherland constant. Because the experimental
data is so limited for this temperature range, there is no clear-cut choice for the best
model. The Sutherland law was used for all computations in this work to provide

consistency with the other computations referenced.



28
Thermal Conductivity

STABL calculates thermal conductivities for both translational and vibrational
modes [23]. It uses Eucken’s relation, given in Equations 3.6-3.8, to calculate the

translational thermal conductivity of each species.

5
ks = ps (icv,trs + C’u,rots) (36)
3R
C’u,trs - 2Ms (37)
0 , monatomics
Cv,rots = (38)
Mis , diatomics

The vibrational thermal conductivity is given by Equation 3.9.

kvibs = ,U'sz,m'bs = (39)

The mixture thermal conductivities are computed with Wilke’s semi-empirical mix-
ing law, where k; is substituted for us in Equation 3.2 and Equations 3.3 and 3.4 are
unchanged.

The other researchers that have computed Stetson’s blunt cone case have used
perfect gas codes. Those that did specify their thermal conductivity method used
a constant Prandtl number of 0.72, calculated the viscosity using Sutherland’s law,

assumed a constant C), and calculated the thermal conductivity from Equation 3.10.

Pr= MTCP (3.10)

Figure 3.4 shows the variation with temperature of Prandtl number and specific
heat at constant pressure, for air. Data of Keyes [52] is plotted along with the values
used by STABL. STABL uses a C, that is constant with respect to temperature
for a given gas mixture. The value shown was that calculated by the Flow Analysis
module of the GUI for a mixture of 0.767 Ny and 0.233 Oy. The Prandtl number was
calculated using Equation 3.10 with the value of C}, shown in Figure 3.4 and viscosity

and thermal conductivity calculated using the blended model. The experimental
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Figure 3.4: Temperature variation of Prandtl number and specific heat at constant

pressure for air. Data is taken from Keyes [52].

Prandtl number varies from 0.77 at 100 K to 0.68 at 500 K, a range of 12% within the
temperature span of the Stetson flowfield. The specific heat is reasonably constant at
low temperatures, but it too begins to vary considerably, differing from the assumed
constant value by 8% at 750 K. This shows that the common assumptions of constant
C) and Pr have relatively large errors, even for this temperature range. The impact
of these assumptions on the stability results should be examined.

Figure 3.5 shows a comparison of the thermal conductivity as computed by
STABL and as computed using a constant Prandtl number of 0.72. The curve
marked “STABL Original” uses the Blottner high temperature viscosity model, the
curve marked “STABL Blended” uses the blended viscosity model described earlier,
and the constant Prandtl number curve uses a Sutherland Law. Experimental data
of Taylor and Johnston [53], Keyes [52], and Vines [54] are also presented. Figure 3.6
shows a detail of the same plot for the low temperature regime. The STABL blended

method agrees very well at low temperatures with both the experimental data and
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Figure 3.5: Thermal conductivity for air computed using various methods compared

with experimental data.
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Figure 3.6: Thermal conductivity models and experimental data at low tempera-

tures.
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Figure 3.7: Velocity profile for Stetson’s blunt cone at s/r, = 175 with r, = 3.81

mm with original viscosity model and new blended model.

the constant Prandtl number method. The use of the blended viscosity law causes
the error in the calculated thermal conductivity with respect to the experimental
data to drop from 70% to 4% at 80 K. However, all three of the methods differ sig-
nificantly from the experimental data at higher temperatures. This may be due to
the importance of the vibrational energy mode at higher temperatures, but this was
not investigated further. Given the close agreement at high temperatures between
the constant Prandtl number method and that used by STABL, this difference with
the experimental data should not be a source of difference between STABL and the
computational results of other researchers. However, it could have an impact on the

accuracy of actual stability predictions.

Effects

Figure 3.7 shows the effect of the change in the viscosity model on the boundary-

layer profile at s/r, = 175. The blended viscosity model makes the velocity profile
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Figure 3.8: Second derivative of the velocity in the normal direction for Stetson’s
blunt cone at s/r, = 175 with r, = 3.81 mm with the original and blended viscosity

models.

less full, and the agreement with the data of Kufner et al. [36] improves considerably.
Figure 3.8 shows the effect of the viscosity model on the second derivative of the
tangential velocity in the body-normal direction. The shape of the profile agrees
much better with the data of Kufner et al. and Esfahanian [35]. The blended viscosity
law causes the magnitude of the peak of the second derivative curve to increase by
23%, and it becomes larger than that of Kufner or Esfahanian. In addition, although
agreement is improved near the boundary-layer edge, there are still small differences
in the profiles in this region critical for stability.

Figure 3.9 shows the effect of the viscosity model on the amplification rate. The
amplification curve peak is shifted from (w kHz,—q; 1/m)=(136,13.4) to (132,17.3),
which is an increase in the peak amplification rate of 29% and a decrease of 3% in

the frequency at which that occurs. The decrease in the frequency causes better
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Figure 3.9: Amplification rate with the original and blended viscosity models for

Stetson’s blunt cone at s/r, = 175 with r, = 3.81 mm.

agreement with the other researchers, but the increase in the amplification rate

causes worse agreement .

3.2.2 Input Conditions

In Reference [33], Stetson et al. specify the quantities My, P,, T,, Px, and unit
Reynolds number. Discussions with Wayne Hawkins of AEDC (personal commu-
nication, July 2005) illustrated how these numbers were obtained. The stagnation
pressure and temperature were measured directly in the stilling chamber. The Mach
number was inferred from pitot measurements. The freestream static quantities were
computed using a Beattie-Bridgeman correction to acount for real gas effects, which
was less than a 1% correction at these conditions. The unit Reynolds number is
a derived quantity that depends on the viscosity model, which can be a source of
uncertainty at the freestream temperature of 54.4 K. Table 3.3 shows a comparison

of the unit Reynolds number calculated using different viscosity laws in common use
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Table 3.3: Unit Reynolds number for the Stetson et al. blunt cone experiment cal-

culated using various viscosity models.

Viscosity Model (L) Rey/ft
Sutherland 3.546 x 107¢ | 2.69 x 10°

Linear Sutherland | 3.771 x 1076 | 2.53 x 106
Keyes 3.893 x 1079 | 2.45 x 108
Chapman-Enskog | 3.788 x 107% | 2.53 x 10°

for the low temperature regime. Stetson (personal communication, July 2005) stated
that he obtained the freestream conditions from AEDC. Hawkins confirmed that the
unit Reynolds number was calculated using a linear Sutherland law.

If the unit Reynolds number is used to determine the freestream conditions, the
conditions will depend on the viscosity model used. All of the other researchers
employed a standard Sutherland law for their computations, and the unit Reynolds
number is an input condition for many CFD codes. To truly match the freestream
conditions of Stetson’s experiment using a Sutherland law code, a unit Reynolds
number of 2.69 x 10%/ft would need to be used, rather than the 2.50 x 108 /ft specified
in Reference [33]. It seems likely that at least some of the other computations in the
literature may have been performed using incorrect freestream conditions.

The STABL mean flow solver uses the freestream static temperature, freestream
Mach number, and freestream static density as input conditions. The freestream
static density is 0.02652% when computed from the stagnation temperature and
pressure using the perfect gas law and the isentropic relations. If a Sutherland
viscosity law is used with a unit Reynolds number of 2.50 x 10°/ft, the freestream
density becomes 0.02464%. The first value appears to be more physically accurate,

and should be used for comparison with the experimental data. However, the second
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Figure 3.10: Amplification rates computed using two different values of freestream

density for Stetson’s blunt cone at s/r, = 175 with r, = 3.81 mm.

number is most likely what was actually used in the other researchers’ computations,

and thus it should be used for code verification with the current benchmarks.

Figure 3.10 shows the effect of changing the density input. Use of the value based

on the unit Reynolds number shifts the amplification rate curve closer to the other

researchers’ results, moving the peak from (132,17.9) to (127,16.6). Figure 3.11 com-

pares N factors for frequencies near 100 kHz calculated with each of the freestream

density values. Despite the difference in the amplification rates, almost no difference

is evident in the N factors.

A similar situation was described by Arnal et al. [55]. When they attempted

to compute stability results independently by two groups, the use of two different

viscosity models between the codes resulted in slightly different freestream condi-

tions. Like the present results, this caused a small, but not neglible, difference in

the amplification rate.
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Figure 3.11: N factors computed using two different values of freestream density for

Stetson’s blunt cone with r, = 3.81 mm.

3.2.3 Boundary-Layer Edge Detection

Many aspects of stability analysis depend on an accurate determination of the
location of the boundary-layer edge. The most unstable first and second mode
disturbances occur near the edge. For this reason, an accurate mean flow solution
near the edge is vital, and PSE-Chem contains interpolation algorithms to structure
the stability grid so that points are clustered at both the wall and edge. In addition,
data presented in the literature is often presented in terms of edge quantities such as
the Reynolds number R, but the edge velocity, temperature, and location are seldom
specified.

Unfortunately, determining the location of the boundary-layer edge is not triv-
ial. When the Prandtl number of the flow is not unity, the viscous and thermal
boundary-layers will have different thicknesses. Valid arguments exist for using each
to determine the “boundary-layer” thickness. In addition, a blunt body introduces

an entropy layer that must be considered. Even if all of these factors are considered,
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a parameter must be specified at which the local value is considered to be the edge.
Choices of 95%, 99%, and 99.5% are all common in the literature.

For these reasons, STABL avoids the use of the edge location wherever possible.
Since the full Navier-Stokes equations are solved over the entire shock layer, an edge
parameter is not used in determining the mean flow. The edge location does matter
in determining the grid for the stability analysis when edge clustering is employed.
However, since this is an interpolation from the existing mean flow solution, the effect
of small differences in the edge location will be minimal. The wave phase speed c,,
given by Equation 3.11, is used to classify instabilities based on their velocity relative

to the edge. This requires an accurate determination of the edge location.

w
a’rUe
STABL uses the total enthalpy to determine the boundary-layer edge. For a

(3.11)

Cp =

Prandtl number less than unity, the thermal boundary layer will be thicker than
the viscous boundary layer. In addition, the total enthalpy is constant outside of
the thermal boundary layer, in contrast to velocity, which may vary outside of the
viscous boundary layer due to pressure gradient effects.

It is possible for a flow to have an overshoot in its total enthalpy profile, as
shown in Figure 3.12. This occurrence leads to three logical possibilities to declare
as the boundary-layer edge, as indicated by the horizontal lines in Figure 3.12. The
lowest line corresponds to the point where the total enthalpy first approaches the
freestream value. The highest line is where the total enthalpy begins to stabilize
at the freestream value. The middle line represents the peak of the overshoot, and
could be seen as a compromise between the other options.

PSE-Chem originally used the lowest line as the boundary-layer edge. The outer
line seems to be a much better choice, as shown by comparison with the mass flux
profile plotted as the dashed line on Figure 3.12. Consequently, the PSE-Chem algo-
rithm was modified to choose the outer line as the edge in the case of an overshoot;
it still handle profiles without an overshoot correctly. A listing of the algorithm

proposed by the author is given in Appendix C.
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Figure 3.12: Representative total enthalpy and mass flux profiles.

3.2.4 Grid Generation

The requirement for accurate second derivatives of the velocity and temperature
profiles throughout the boundary-layer means that much finer grids must be used
for stability analysis than for most other CFD applications. Although results could
sometimes be obtained with coarser grids, 80 points in the boundary layer was found
to be an approximate minimum to obtain grid independent results. All of the results
presented in this thesis were obtained with grids containing at least 300 axial points
and at least 250 normal points.

Figure 3.13 shows the amplification curve computed for Stetson’s blunt cone at
s/rn, = 175 with r, = 3.81 mm using several grids with varying resolution. The five
curves shown used grids with 106, 121, 140, 239, and 276 points in the boundary
layer. The points were clustered at the wall and exponentially stretched to the outer
domain. The grids marked (b) in Figure 3.13 used an outer grid boundary that was

very carefully constructed to match the shock shape over the entire length of the
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Figure 3.13: Amplification rate for Stetson’s blunt cone at s/r, = 175 with r,, = 3.81

mm computed using mean flows with varying grid resolutions.
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cone. The grids marked (a) used a grid that matched the shape only reasonably well
and is representative of the quality of grids used in most of the other computations
shown in this thesis. Small differences between the grids are present, but no apparent
trends are visible.

Figure 3.14 shows the N factors computed using each of the grids. Again, the
differences are relatively small. The grids marked (b) produce slightly smaller N
factors than the grids marked (a). There is no discernable trend with the total grid
size. This suggests that the differences are due to the sensitivity of the stability
calculations to small grid variations, and it cannot be conclusively said that one
grid shape is better than the other. The scatter of approximately 5% at s = 1.0
m may represent an uncertainty in the results that cannot be eliminated through
increasing mesh density. In any case, the differences are slight compared with the
overall uncertainty associated with the use of the e method, and sufficient mesh

spacing is used for the present results.

3.2.5 Wall Temperature

Most previous computational comparisons to the Stetson experiment have as-
sumed an adiabatic wall, but Schneider [4] showed that there was actually signifi-
cant heat loss through the sting. Lyttle et al. [41] performed stability computations
using both an adiabatic wall and wall temperature distribution similar to the ex-
periment. They found a difference of approximately 15% in the peak amplification
rate at s/r, = 175 m, but the difference did not explain the differences with the
experimental amplification rates. All of the Stetson computations in this thesis were
performed assuming an adiabatic wall for comparision with the other computations.

Lyttle et al. plot their calculated adiabatic wall temperature distribution in Fig-
ure 5 of Reference [41]. Figure 3.15 shows a comparison of Lyttle’s distribution with

that computed by STABL. A difference of about 5 K is evident along the frustum of
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Figure 3.15: Surface temperature distribution for Stetson’s blunt cone with r,, = 3.81

mm as computed by STABL and by Lyttle et al. [41].

the cone. The reason for this difference is currently unknown, but it could be related
to the differences in thermal conductivity shown in Figure 3.5.

A solution was obtained which used the wall temperature distribution computed
by Lyttle as a fixed boundary condition, rather than the standard adiabatic wall
condition. The adiabatic temperature distribution computed by STABL was used
forward of s = 0.008 m because accurate results could not be obtained from the plot
in Reference [41]. Figure 3.16 shows the computed amplification rates using each
mean flow solution. No significant differences are present in the local amplification.
Figure 3.17 shows the N factors computed with each wall temperature distribution.
The use of the Lyttle wall temperature distribution results in a slightly lower N
factor than with the STABL calculated distribution, which is opposite the expected
trend of a greater second-mode N factor for a colder wall. The difference appears to

be in the critical location, as the local slopes of the two curves are the same.
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Figure 3.16: Amplification rate for Stetson’s blunt cone at s/r, = 175 with r, =
3.81 mm computed using mean flows with the surface temperature distributions

calculated by Lyttle and STABL.

3.2.6 STABL User Options

STABL has a number of options that a user can adjust to give more accurate
results or to match the methods of another computation. Many combinations of var-
ious parameters were tested, and in all cases the effects on the stability results were
found to be negligible. Figure 3.18 and Figure 3.19 show the effect on the amplifica-
tion rate and N factor of changing two of these options. For the “without chemistry”
line, chemical reactions and vibrational energy modeling were turned off. This is not
expected to have a significant effect on the results for wind tunnel conditions. For
the “reduced dissipation” line, the numerical dissipation parameters ¢; and ¢; in
DPLR were halved. In all cases, the curves overlay each other completely, showing
the independence of the solution with respect to these factors. The computational

time was not significantly affected by either of these changes.
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Figure 3.17: N factors for Stetson’s blunt cone with r, = 3.81 mm computed us-

ing mean flows with the surface temperature distributions calculated by Lyttle and

STABL.
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Figure 3.18: Amplification rate curves for Stetson’s blunt cone at s/r, = 175 with

rn = 3.81 mm computed using various user-specified options in STABL.
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Figure 3.19: N factor curves for Stetson’s blunt cone with 7, = 3.81 mm computed

using various user-specified options in STABL.

3.2.7 Freestream Thermal Non-Equilibrium

All of the other computations carried out in this chapter assume that the freestream
flow is in thermal equilibrium. This is consistent with the other computations ref-
erenced, which were all performed with codes that do not consider any effect of the
vibrational temperature.

Roy et al. [56] showed that the expansion rate in the Sandia National Laboratories
hypersonic wind tunnel with the Mach 8 nozzle is much larger than the thermal
relaxation rate, causing the vibrational temperature of the freestream flow in the
test section to be frozen near the stagnation temperature. It seems likely that a
similar situation could exist in AEDC’s Tunnel B, which has a similar Mach number
and slightly higher freestream stagnation temperature than the 633 K found in the
Sandia tunnel. Bertolotti [57] showed that vibrational energy relaxation can have a
significant effect on stability. He states that since the vibrational energy does not

exceed 10% of the total internal energy of air until the flow stagnation temperature
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Figure 3.20: N factors calculated for Stetson’s blunt cone with r, = 3.81 mm assum-

ing both equilibrium and frozen thermal states.

surpasses 800 K, the degree of thermal nonequilibrium does not significantly impact
stability below this temperature. Bertolotti does not present any computations for
flows with stagnation temperatures below 1000 K.

Since stability results have been shown to be very sensitive to small changes in
the mean flow, it seems likely that there could be some effect even at a stagnation
temperature of 750 K. The degree of thermal nonequilibrium in Tunnel B was not
calculated, but to gauge the maximum potential effects on stability, computations
were performed with the freestream vibrational temperature set to the stagnation
temperature. The true vibrational temperature should be somewhere between the
stagnation temperature and the freestream static temperature, so these stability
results and those for full equilibrium should bracket the results for the actual condi-
tions.

Figure 3.20 shows a comparison of the N factors obtained when thermal equilib-

rium is assumed and when the vibrational temperature is frozen at the stagnation
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temperature. Differences are evident in both the critical location for a given fre-
quency and the growth rate, or slope of the curve. When the thermal state is frozen,
N = 5.5 is first reached by a 120 kHz mode (not shown on figure) at s = 0.959,
which is 4% earlier than the location of s = 1.00 obtained when thermal equilibrium
is assumed. When the amplification rate at s/r, = 175 is plotted for both frozen and
equilibrium flow, no difference is seen. This occurs despite the difference in slope
evident in Figure 3.20 at both 150 and 170 kHz at that location, s = 0.67 m. This
suggests that the difference in slope might be caused by changes in the disturbance
shape factor, which are included in a PSE analysis but not in a local LST calculation.

The effect on the amplification rates at s/r, = 175 is many orders of magnitude

below the effect on the N factors. The reason for this is not currently known.

3.2.8 Normalization

All of the references cited present their amplification rates in non-dimensional
form, but only Lyttle et al. [41] state the numerical values used in the normalization.

The others all use the length scale given by Equation 3.12.

VoS
L=,/ 3.12
= (3.12)

By default, PSE-Chem will output both dimensional amplification rates and those
normalized by this length scale, but the value of the length scale depends on the vis-
cosity model employed. Since there is no standard viscosity model for the freestream
temperature, all of the figures in this thesis are presented in dimensional quantities
to avoid confusion. The data digitized from the references was subsequently con-
verted to dimensional form using the values provided for the Lyttle et al. data and

Equation 3.12 for all of the others.
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Figure 3.21: The effect of using different C and Fortran compilers on complex wave

number for Stetson’s blunt cone at s/r, = 175 with r, = 3.81 mm.

3.2.9 Compilers

The C and Fortran compilers used to compile the STABL source code were at
one time found to make a difference in the results obtained. The documentation
states that STABL is compatible with either the GNU compilers gcc and g77 or the
Portland Group compilers pgcc and pgf90 [26]. The GNU compilers were employed
for the first eight months the code was used because of their ready availability on a
Linux machine. Differences in the output obtained by the author and Heath Johnson
using the same input files and source code led to a trial of the Portland Group
compilers. This was found to have a significant effect, as illustrated in Figure 3.21,
which shows the different results obtained with each set of compilers. In other cases,
using the GNU compilers caused PSE-Chem to crash without producing any results
at all. These problems were not encountered with the Portland Group compilers.

The discrepancy between the compilers appears to have been caused by a bug in

the PSE-Chem source code that was recognized and avoided by the Portland Group
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Figure 3.22: Amplification curve for Stetson’s blunt cone with r, = 3.81 mm at
s = 0.3 m showing the existence of multiple families of solutions with different phase

speeds.

compilers but that caused failure in the less sophisticated GNU compilers. That bug
has since been fixed, and others have subsequently used the GNU compilers without
incident. However, this is an example of the importance of code verification. If
the same conditions had not been run by multiple users on multiple machines using

different configurations, the bug may have gone unnoticed indefinitely.

3.2.10 Numerical Behavior

As described in Section 2, the global solution procedure produces a spectrum
of approximate eigenvalues, and the local procedure iterates those guesses to the
converged solution. For the Stetson et al. conditions, and presumably others, there
exist many solutions for each frequency, and different guesses will converge to dif-
ferent solutions. To determine the complex wavenumber of the second mode, the

local solver must analyze a guess that converges to that most unstable solution. The
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Figure 3.23: Amplification curves for Stetson’s blunt cone at s/r, = 175 with r, =
3.81 mm obtained with the original extrapolation routine and with the modified

extrapolation routine.

solutions can be differentiated by their phase speeds. The second mode typically had
phase speeds in the range of 0.90-0.95, whereas the other solutions would have phase
speeds greater than 1.0. Mack shows schematic diagrams of the different families of
solutions in Figures 1 and 2 of Reference [58]. An example of the different families
of results for the Stetson case at s/r, = 175 is shown in Figure 3.22.

Mack observes that the radius of convergence for the most unstable solution can
be very small at hypersonic speeds, and that was observed in the present work. As
an example, PSE-Chem gives the user the option to specify a wavenumber guess to
the local solver. Even when the converged results of a previous local solution at the
same frequency are fed back to the solver with five significant figures, often the new
solution would converge to one of the damped families of solutions. PSE-Chem has
options to extrapolate guesses for new frequencies based on converged solutions at

neighboring frequencies. Based on results obtained by the author, the extrapolation
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Figure 3.24: Spatial growth rate and N factor for Stetson’s blunt cone with r,, = 3.81

mm computed using different step sizes for the PSE marching procedure.

algorithm was changed to enable sweeps of both increasing and decreasing frequency,
which helped to ensure that once the second mode family was found for one frequency
it would be found for the rest of the range. Figure 3.23 shows the results obtained
when the original extrapolation routine is used and when the new extrapolation
routine is used.

Another numerical difficulty encountered during the solution process was an in-
stability of the PSE marching procedure. Although the pressure gradient is modified
in the PSE marching to suppress upstream disturbances [23], the solution can be-
come unstable for small step sizes. In PSE-Chem, the problem manifested itself in
oscillations in the spatial growth rate, as shown in Figure 3.24. PSE-Chem provides
an option to the user to skip an integer number of axial stations during each march-
ing step. This allows the user to specify a large number of axial points to obtain
a more accurate mean flow without sacrificing the numerical stability of the PSE

procedure.
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Figure 3.25: Mean velocity profile for conditions of Stetson et al. [33] at s/r, = 175
with 7, = 3.81 mm compared with the results of Kufner et al. [36].

3.3 Computational Comparison

The mesh used for the final computation contained 440 axial points and 350 body-
normal points, and it corresponds to the 440x350 (b) line in Figure 3.14. Chemical
and thermal nonequilibrium effects were modeled, and a freestream air mixture with
standard mass fractions of 76.7% N, and 23.3% O, was assumed. The freestream
density was set to 0.02464% to match the conditions thought to be used by the other
researchers. Thermal equilibrium was assumed in the freestream. STABL version
1.26 was used for both the mean flow and the stability calculations.

Figure 3.25 shows the mean tangential flow velocity at s/r, = 175. Data in Figure
la of Kufner et al. [36] was digitized using the method described in Section 3.1 and
is plotted on Figure 3.25 for comparison. Agreement is generally good, although
there is a small difference near the edge of the boundary-layer. Figure 3.26 shows
the second derivative of the velocity profile with respect to the body-normal distance

at the same station. Data from Figure 1b in Reference [36] is also plotted. Again,
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Figure 3.26: Second normal derivative of velocity profile for conditions of Stetson et
al. [33] at s/r, = 175 with r,, = 3.81 mm compared with the results of Kufner et
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Figure 3.27: Amplification rate for conditions of Stetson et al. [33] at s/r, = 175

with r, = 3.81 mm.
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Table 3.4: Location of the peak amplification as computed by STABL and several

researchers.
Computation | w (kHz) | —o; (1/m)
STABL 127 16.5
Malik [34] 132 13.8
Esfahanian [35] 129 15.1
Kufner [36] 126 13.5
Stilla [36] 122 14.3
Lyttle [41] 133 14.7
Zhong [42] 134 15.2

agreement is good except near the boundary-layer edge. Because the instabilities
arise near the boundary-layer edge, this difference could be significant.

Figure 3.27 shows the amplification curve at s/r, = 175 compared with that com-
puted by other researchers. The peak frequency is slightly lower than the mean peak
frequency, but it is within the scatter of the other results. The peak amplification
rate is higher than any of the other researchers. The magnitude of the difference in
the peak amplification rate is comparable to the scatter in the other results shown.
Table 3.4 summarizes the location of the peaks in Figure 3.27.

As mentioned previously, most of the literature pertaining to the Stetson et al.
experiment focuses on the s/r, = 175 axial station. Malik et al. present amplification
rates for s/r, = 215 in Figure 15b of Reference [34]. Figure 3.28 shows a comparison
of the amplification curve computed by STABL at that station with Malik’s data.
The level of agreement is consistent with the results presented in Figure 3.27, in
that the peak computed by PSE-Chem is shifted up and to the left with respect to
Malik’s peak.
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Figure 3.29: Amplification rate curves at axial locations ranging from s = 0.3 m to

s = 1.0 m for Stetson’s blunt cone with r, = 3.81 mm.
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Figure 3.30: Maximum N factors obtained for various frequencies for Stetson’s blunt

cone with r, = 3.81 mm.

Figure 3.29 presents the local amplification rate computed at axial locations
ranging from s = 0.3 m to s = 1.0 m. No amplification is found forward of s = 0.3
m. The peak amplification grows from s = 0.3 m to s = 0.5 m and is nearly constant
from s = 0.5 m to the aft end of the cone. The most amplified frequency decreases
as the axial distance increases. This is expected, given that the frequency is highly
tuned to the boundary-layer thickness [59]. One interesting phenomenon is that
for all locations from s = 0.4 m aft, amplification occurs for frequencies below the
primary second mode frequency. That amplification represents a 2-D first mode
instability, and amplification in that frequency range is greater for oblique wave
angles. The solution from 70-150 kHz at s = 0.3 m represents one of the damped
families of solutions described in Section 3.2.10. In this case, that solution is less
stable than the second mode solution at those frequencies.

Figure 3.30 displays the maximum N factors obtained for various frequencies

for Stetson’s r,, = 3.81 mm case. To obtain these N factors, a test matrix was con-
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Table 3.5: Transition location predicted by STABL for Stetson et al. blunt cone
case compared with that predicted by other researchers. Transition was assumed at

N=5.5 for all computations.

Computation Str (m) Rego,s,,

STABL 1.00 | 8.192 x 10°
Esfahanian and Hejranfar PNS [40] 1.00 | 8.21 x 106
Esfahanian and Hejranfar IPNS [40] | 0.973 | 7.98 x 10°

Stilla [37] 0.956 | 7.84 x 106
Malik et al. [34] 0.956 | 7.84 x 106
Rosenboom et al. [38] >1.0 | >82x10°
structed consisting of all combinations of the starting locations s = 0.1,0.15,...,1.0m

and frequencies w = 50, 60, ...,200 kHz. PSE marching was conducted at each point
in the test matrix, and the maximum N factors for each frequency are plotted in Fig-
ure 3.30. If, following the work of Malik et al. [34], Stilla [37], and Esfahanian and
Hejranfar [40], transition is assumed to occur at N = 5.5 in this noisy environment,
STABL would predict transition at s = 1.00 m with 130 kHz the most amplified fre-
quency. Table 3.5 shows a comparison of the transition location predicted by STABL
with that of the other researchers. The unit Reynolds number specified by Stetson
et al. of 2.50 x 10°/ft was used to convert between the Ren s, and s;. Agreement
with the other researchers is better than 5%.

Figure 3.31 shows a comparison of the N factors computed by STABL with the
local N factors computed by Rosenboom et al. [38]. Agreement in the location of
amplification of the various frequencies is fair, with no clear trends evident. The
STABL 140 kHz and 160 kHz lines show amplification throughout the full surface
length, in contrast to the Rosenboom results, which begin to decay at s = 0.85 and

s = 0.55 m, respectively. The STABL results are consistent with Figure 3.29, which
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Figure 3.31: Comparison of N factors calculated by STABL with local N factors of

Rosenboom et al. [38] for Stetson’s blunt cone with 7, = 3.81 mm.

shows all frequencies up to 180 kHz amplifying on the aft portion of the cone. The
reason for the differences is not clear. Exact results for Rosenboom et al. are not
given in Table 3.5 because the data do not extend beyond s = 1.00 m or N = 5.0,
so only lower bounds for the predicted transition location are given.

Figures 3.32 and 3.33 show the temperature and pressure eigenfunctions at the
aft end of the cone. These are dimensional quantities obtained for an initial distur-
bance amplitude of 0.001 K or Pa. The shape of the curves is indicative of second
mode disturbances, as shown by Johnson [23]. The pressure amplitude shows two
peaks, which matches the results of Mack [12] for second mode waves. The pressure
amplitude in Figure 3.32 does not cross zero because the amplitude is plotted, in
contrast to Mack, who plotted the real component of the eigenfunction. The bump
in the pressure amplitude and phase at y/§ = 0.85 is thought to be a numerical

artifact, but it was not investigated.
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Figure 3.33: Amplitude and phase of the pressure eigenfunction at the aft end of the

cone for Stetson’s blunt cone with r, = 3.81 mm.
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4. First-Mode Verification

Two cases were analyzed to verify STABL’s ability to correctly calculate first-mode
disturbances. Since real hypersonic vehicles have some degree of bluntness to control
stagnation-point heating, a blunt cone case was desired. However, no previously
calculated blunt cone cases for which the first mode was dominant could be found.
A low Mach number sharp cone was found that had been shown to be first mode
dominant. In addition, a large-bluntness cone was found for which the first mode
had a degree of amplification comparable to the second mode. Both cases will be

discussed in this chapter.

4.1 Sharp Cone at Mach 3.5
4.1.1 Experimental Conditions

A sharp cone was analyzed using the conditions shown in Table 4.1 to verify
STABL’s ability to calculate first mode disturbances. The conditions correspond
to experimental data obtained by Beckwith et al. [60] in the NASA Langley Mach
3.5 pilot quiet tunnel. This tunnel is designed to give freestream disturbance levels
comparable to flight. The conditions chosen correspond to the fourth unit Reynolds
number data set in Run 5 of Reference [60]. The first mode is expected to be
dominant at this low freestream Mach number with an adiabatic wall.

This case was previously analyzed by Malik as case QT1 in Reference [61] using
the COSAL stability code. This older LST-based code calculates temporal stability
and uses Gaster’s group velocity transformation to obtain spatial stability results.

The mean flow was obtained from a boundary-layer code and provided as an input

to COSAL.



Table 4.1: Test conditions for sharp cone at Mach 3.5

60

Condition Value
Cone half angle 5°
Cone length (m) 0.381
Wall temperature | Adiabatic
Fluid Air
Moo 3.5

po (kPa) 525
T, (K) 319.0
Too (K) 92.53
poo (kg/m?) 0.02592
Reoo/m 2.74% 107
S (m) 0.278

Roger Kimmel of the Air Force Research Laboratory (personal communication,
March—April 2005) performed additional computations for this case using the e?al*
stability solver. This more recent code is also widely used for hypersonic stability
analysis. Spatial stability results are calculated directly, and a perfect gas model is
assumed. For the cases shown, the mean flow was provided by a similarity solver
built into the e code. These computations were performed at the request of the

author, and a good deal of collaboration and discussion with Dr. Kimmel occurred

to troubleshoot differences between the results.

4.1.2 Computational Comparison

A grid with 450 axial points and 350 normal points was used for the DPLR2D

mean flow solution. Exponential stretching was used in both directions to cluster grid
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Figure 4.1: Lines of constant pressure at the nosetip for a sharp cone at Mach 3.5.

points near the cone tip. This clustering increased the number of points within the
boundary-layer and reduced the degree of numerical error caused by the singularity
at the nose. Figure 4.1 shows isobars for the first 0.5% of the cone length. The
solution is valid very near the nose, despite the singularity caused by the sharp tip.
The number of grid points within the boundary-layer varied from 148 near the nose
tip to 109 at the base. Chemical and thermal nonequilibrium effects were modeled
with thermal equilibrium assumed in the freestream, and the blended viscosity model
was used for all calculations.

Figure 4.2 shows wall-tangential mean flow velocity profiles computed by STABL

and eMalz'lc

at three axial locations. The velocities computed by STABL are on the
order of 10-20 m/s larger than those computated by eM%% throughout the profile
for all distances. Similar trends are seen in the temperature profiles, shown in Fig-
ure 4.3, with the differences being on the order of 5 K. These visible differences in the
temperature and velocity can be expected to have a significant effect on the stability
results. Meaningful second-derivative comparisons were not available due to the lack

Malik similarity solution.

of precision in the output of the e
Linear stability calculations were performed at several axial locations. Figure 4.4
shows the amplification rate plotted as a function of both frequency and wave angle

for six different axial locations. The contour plots shown were created by interpolat-
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sharp cone at Mach 3.5 at several

Figure 4.3: Mean flow temperature profiles for the sharp cone at Mach 3.5 at several

axial locations.
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ing between the results of twelve solutions at each location. Each of the individual
solutions had a varying frequency but constant 5. The constant dimensional span-
wise wavenumber condition obeys the irrotationality condition on the wavenumber
vector described by Mack [12,58]. The wave angle was computed for every point
using Equation 4.1.

) = arctan (5—> (4.1)

Oy

Several qualitative conclusions can be drawn from Figure 4.4. The most amplified
frequency decreases as R increases. The maximum amplification rate also decreases
as R increases, although that effect is not seen very near the nose. The wave angle
of the most amplified mode increases from approximately 60° very near the nose to
approximately 70° on the aft portion of the cone.

Several mean flow solutions using different numbers of grid points within the
boundary-layer were analyzed to ensure grid-independence of the solution. Figure 4.5
shows the effect of the different grids on the N factor calculations. These calculations
are for a mode at w = 104 kHz and f = 2400/m with marching beginning at
s =0.0339 m. Four of the solutions are very similiar; the only difference is seen
for the grid with 72 points in the boundary-layer. The reason for this repeatable
difference is not clear. The grid with 109 points in the boundary-layer was used for
all other calculations in this section.

To obtain the maximum N factors for this case, a test matrix was constructed
consisting of w = 25,50,...,250 kHz, § = 1000, 2000, ...,8000 1/m, and starting
location s = 0.02,0.04,...,0.12 m. The modes producing the maximum N factors
at each location are shown in Figure 4.6. Amplification began at s = 0.02 m for the
higher frequencies and shortly thereafter for the 75 kHz mode. At the experimental
transition location of s = 0.278 m, the most amplified mode has a frequency of 75
kHz, a 8 of 2000 1/m, a wave angle of 64°, and a N factor of 12.2. This N factor
is larger than the range of 9-11 commonly calculated at experimentally measured
transition locations in low disturbance environments. For comparison, the value of

Rey/M, is 154 at the transition location, as shown in Figure 4.7.
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Figure 4.5: N factor calculations for the sharp cone at Mach 3.5 with five separate
mean flow grids. Calculations are for a mode with w = 104 kHz and g = 2400/m,
beginning at s = 0.0339 m.

" 100 kHz

N
B e e e L B e e e

[RRNTRI TR SR NANETITAN S NN NN |

o
o
=
[
[N}
o
w

s (m)
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Figure 4.9: The wave angle for the five most amplified modes on the sharp cone at

Mach 3.5.

Figure 4.8 shows the phase speed for each of the five modes shown in Figure 4.6.
The phase speed is always within the range 0.55-0.85, which is lower than the 0.90—
1.00 range found for second mode waves. The phase speed increases for each mode
as the surface distance increases, as is expected based on Equation 3.11 since
decreases as the boundary-layer thickness increases. The phase speed increases at
all distances as the frequency increases, as is also expected based on Equation 3.11.
The phase speed of the most amplified mode at the transition location is 0.73.

Figure 4.9 shows the wave angles for each of the five modes shown in Figure 4.6.
The wave angle increases as the surface distance increases, which is expected based
on Equation 4.1 since «, decreases and [ is held constant. No clear trend of wave
angle with frequency is evident. The wave angle of the most amplified mode at the
transition location is 64°.

Figure 4.10 shows the amplitude and phase of the temperature eigenfunction at

the aft end of the cone for a 104 kHz disturbance with 8 = 2400 1/m. Figure 4.11
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Figure 4.11: Amplitude and phase of the pressure eigenfunction for a 104 kHz dis-
turbance with 8 = 2400 1/m at the aft end of the sharp cone at Mach 3.5.
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shows the pressure eigenfunction for the same disturbance. The one peak present in
both the temperature and pressure amplitudes is indicative of a first mode distur-
bance. The shape of the pressure amplitude curve matches well with that shown by
Mack [12] for first mode waves. The amplitudes shown are for an initial disturbance

amplitude of 0.001 at s = 0.0339 m.

4.1.3 Verification and Validation Issues

Comparisons were made between the present results and those obtained by Malik
using COSAL [61] and Kimmel using eM%#* (personal communication, March—April
2005). Malik calculated N factor growth rates for six frequencies ranging from 22-188
kHz. His most amplified mode at the experimental transition location has a frequency
of 78 kHz, a wave angle of approximately 60°, and a N factor of 10.1. Compared to
the transition N factor calculated by STABL of 12.2, this is a significant difference,
although the frequency and wave angle of the most amplified disturbances agree to
within 10%.

Figure 4.12 shows a comparison of the N factors calculated by STABL and those
calculated by Kimmel using the %% code for a mode at 104 kHz with 8 = 2400
1/m. The N factors calculated by STABL are approximately 30% higher than those

Malik  The agreement is much worse than that seen in Figures 4.2

calculated by e
and 4.3 for the mean-flow profiles. The difference in N factor may be due to the
subtle differences in the mean flow, or it may be due to differences in the stability

Malik meanflow using PSE-Chem,

solvers. An attempt was made to analyze the e
but publication-quality results were not obtained due to problems converting the

similarity solution to a general 2D flowfield.

4.2 Large-Bluntness Cone at Mach 8

All hypersonic vehicles have some degree of nosetip bluntness to control stagna-

tion point heating. For a blunt cone, when the nose radius increases for a fixed, high
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Figure 4.12: N factors calculated using STABL compared with results of Kimmel
using e for a mode at 104 kHz with 3 = 2400 1/m for the sharp cone at Mach
3.5.

freestream Mach number, the first mode may become dominant. For this reason,
a very blunt cone was analyzed using the conditions shown in Table 4.2 to further
verify first and second-mode computations. The flow conditions match those of the
Stetson et al. [33] blunt cone experiment, but the bluntness was increased while
the ratio of the nose-tip radius to the body length was kept constant, making this
case impractical for wind tunnel experiments. This case was previously analyzed by
Rosenboom et al. [38,62]. This case was chosen for first mode verification because
Rosenboom et al. found first mode N factor growth at a level comparable to second
mode growth. Their LST based calculations showed a maximum first mode N factor
at s = 11 m of approximately 6.75 for a 2 kHz disturbance. For comparison, the
maximum second mode N factor Rosenboom et al. calculated was 8.6 at 34 kHz.
Kufner [63] performed calculations for this case without finding any first mode in-

stabilities. However, Rosenboom points out that his second mode calculations for



Table 4.2: Test conditions for cone with r, = 42.67 mm at Mach 8
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Condition Value
Nose radius (mm) 42.67 mm
Cone half angle 7°
Maximum arc length (m) 11.35
Wall temperature Adiabatic
Fluid Air
Moo 7.99
po (kPa) 4000
T, (K) 750
Too (K) 54
Poo (kg/m?) 2.7x1072
Reg/m 2.5 x106

this case suffered from numerical difficulties that manifested themselves as wiggles
in the disturbance growth rates. This casts doubt on the first mode calculations for
the present case.

An accurate mean flow was computed using a mesh with 450 axial points and
350 wall-normal points. Approximately 100 grid points were contained within the
boundary-layer over the cone frustum. The edge Mach number was 4 near the cone

shoulder and increased to 6.3 far downstream of the nose.

4.2.1 First Mode Stability

Rosenboom et al. [38] calculated the first mode critical point to be 0.15 m. Figure
23 of Reference [38] shows all frequencies from 1-9 kHz becoming unstable around

0.15 m, followed by a region of approximately 5 meters where they again become
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Figure 4.13: First mode N factors for the large bluntness cone at Mach 8.

stable, and a region from s = 7 m to the end where all frequencies from 1-9 kHz
are again unstable. Figure A.12 of Reference [62] shows the wave angles for the
instabilities Rosenboom calculated. For frequencies from 1-5 kHz, the wave angle is
greater than 80° at the critical point, drops to around 60° almost immediately, and
eventually levels off between 65° and 70°. For frequencies greater than 5 kHz, the
wave angle is less than 50° at the critical point but rises to the trend of the lower
frequencies by s = 1 m. Figure 28 of Reference [38] shows N factors for this case.
Rosenboom shows amplification from 0.5-2.0 m, a short period of damping, and then
monotonic growth from approximately 4 m to the end of the cone. The figure was
digitized using the Un-Scan-It software, and N = 5.5 is first reached at s = 9.7 m
by the 2 kHz mode at a wave angle of 70°.

Computations were performed with STABL to compare with the results of Rosen-
boom et al. Figure 4.13 shows samples of the first mode N factors calculated
by STABL. A test matrix consisting of combinations of s = 0.5,1.0,...,10.5 and

B = 20,40,...,100 1/m was analyzed. Combinations involving additional values
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Table 4.3: Transition location predictions for the large bluntness cone at Mach 8.

Transition is assumed at N = 5.5.

Computation Sy (m) | w (kHz) | ¢
First Mode

STABL 9.7 3.33 70°

Rosenboom et al. [38, 62] 9.7 2 70°

Second Mode

STABL 9.0 34 0°
Rosenboom et al. (local) [38] 9.6 34 0°
Rosenboom et al. (nonlocal) [38] | 9.8 34 0°

of B < 20 1/m were also analyzed separately, but no significant amplification was
found. For all cases shown, 100 frequencies within the range 1-10 kHz were analyzed
at the starting location using LST, and the lowest unstable frequency was used for
PSE marching. For these particular conditions, that lowest unstable frequency was
always the lowest for which the global and local solvers could obtain converged solu-
tions. The spanwise wavenumber § and the frequency w were fixed as the marching
progressed downstream. Table 4.3 summarizes the comparison. N = 5.5 is first
reached at s = 9.7 m by a 3.33 kHz instability at 70°. Despite differences in the fre-
quency, the transition location and wave angle predicted by STABL and Rosenboom
et al. are the same. In addition, the general characteristics of the N factor curves
calculated by STABL and Rosenboom et al. agree well. Both show an initial hump,

followed by brief damping and a long rise.
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Figure 4.14: Second mode amplification curves for the large-bluntness cone at
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4.2.2 Second Mode Stability

A comparison was also made with the second mode stability results of Rosenboom
et al. Rosenboom shows second mode amplification beginning at s = 5.5 m at 40
kHz. N = 5.5 is reached at approximately 9.6 m for the local calculation and
approximately 9.8 m for the nonlocal calculation at a frequency of 34 kHz for both
local and nonlocal.

Figure 4.14 shows the second mode amplification curves calculated by STABL.
For the computations shown, a frequency range of 2060 kHz was analyzed, but no
eigenvalues were found by the global solver at frequencies greater than 35 kHz for any
location. These calculations found a critical frequency of 34 kHz at s = 6.5 m. The
peak amplification increases and the unstable frequencies decrease as s increases. The
critical location is slightly aft of Rosenboom’s critical location of 5.5 m at 40 kHz.
However, since the lack of eigenvalues above 35 kHz in PSE-Chem’s calculations

appears to have been caused by unknown numerical difficulties, higher frequency
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Figure 4.15: Second mode N factors for the large-bluntness cone at Mach 8.

modes may have provided better agreeement in the critical location. Rosenboom
shows the 34 kHz mode beginning to amplify at s = 7 m, which is comparable to
the location calculated by STABL of 6.5 m.

Figure 4.15 shows the second mode N factor curves generated by STABL. A
frequency range of 20—60 kHz was analyzed in 2 kHz increments for the global solution
and 0.2 kHz increments for the local solution, but no eigenvalues were found by the
global solver at frequencies greater than 35 kHz for any location. STABL selected
the critical frequency at each starting location to begin PSE marching. Table 4.3
summarizes the comparison. Amplification begins at s = 6.5 m, slightly behind
the critical location of s = 5.5 m calculated by Rosenboom et al. An N factor of
5.5 is first reached at s = 9.0 m by a 34 kHz wave. This is slightly ahead of the
location calculated by Rosenboom of s = 9.6 m for the local calculation or s = 9.8
for the nonlocal calculation, but the difference is on the order of the starting distance

resolution of 0.5 m. Additional computations should be performed to reduce the gap
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Figure 4.16: A comparison of the spatial growth rates of the largest first and second-

mode N factors for the large-bluntness cone at Mach 8.

between STABL computations. Overall second-mode agreement between STABL
and Rosenboom is good.

An outstanding question in stability theory is the nature of the interaction be-
tween the first and second modes. Figure 4.16 shows the amplification rates of the
most amplified first and second mode waves, and Figure 4.17 shows the N factors for
those waves. Both figures show the edge Mach number distribution. The apparent
discontinuity in the edge Mach number at s = 3 m is caused by numerical difficulties
of the type described in Section 3.2.3. The first mode amplifies over the full length
of the body. The second mode begins to amplify when the edge Mach number is 5.7,
and it becomes dominant when the edge Mach number is 6.0.

The calculations also showed another unstable mode that was not expected. Fig-
ure 4.18 shows the N factors calculated by two-dimensional waves at 1 kHz. The
different curves represent different starting locations. The waves amplify very slightly

until s = 3 m, at which point they amplify very rapidly until s = 4 m. They then
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decay slightly until s = 10 m, at which point they again amplify rapidly until the
end of the body. N = 5.5 is first reached at s = 10.6 m. These waves were found
serendipitously during a search over the 1-10 kHz frequency range when the lowest
amplified frequency was chosen for marching. Although this search was run every
0.5 m, only the starting locations between 1.5 and 3.0 m exhibited this behavior.
The reason for the different amplification between the different starting locations is
unknown. This might be a new phenomenon, but further investigation is necessary

before it can be characterized.
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5. Comparisons to Purdue Mach-6 Ludwieg Tube

Experiments

As discussed in Chapter 3, the Stetson et al. [33] hot-wire measurements are of lim-
ited utility for validation purposes. In addition, the expense of conducting research
experiments in a production wind tunnel like Tunnel B makes it unlikely that the test
can be replicated in that tunnel. For this reason, Rufer and Schneider [64] have been
developing equipment and procedures to conduct hot-wire measurements of instabil-
ity waves in the Purdue Mach-6 Ludwieg Tube (M6LT). Although this wind tunnel is
designed for quiet flow, it is currently quiet only at low unit Reynolds numbers [11],
and the experiments described here take place under conventional-noise conditions.
The measurement of natural second-mode instability wave growth is complicated
by the six-to-ten-second usable run time of the M6LT, which makes calibration in
the tunnel difficult and results in frequent wire breakage from the many start-up
and shut-down cycles. This chapter will present computations that are designed to
match the conditions of several of Rufer’s experiments.

The test conditions for the cases discussed here are summarized in Table 5.1.
The total pressure corresponds to the pressure in the tunnel driver tube, and it was
set to one of the three values shown in the table. The specific value will be noted
for each case. In addition, as the driver tube empties, the total pressure decreases
throughout the run, and the value given in Table 5.1 is the nominal total pressure at
the beginning of the run. As the hot-wire measurements were taken within the first
second of operation, the actual pressure should be close to the nominal pressure. The
freestream Mach number also changes as the total pressure changes throughout the
run. The wall temperature listed in Table 5.1 is an estimate. Although the driver

tube section of the M6LT is heated to 433 K, the temperature of the test section is
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Table 5.1: Nominal test conditions for the hot-wire experiments of Rufer [64]

Condition Sharp Cone Blunt Cone
Half angle 7° 7°
Length, x (m) 0.5689 0.5653
Base diameter (m) 0.1397 0.1397
Nose radius (mm) 0 0.508
Wall temperature (K) 300 300
Fluid Air Air
My 5.8 2.8

po (psia) 90, 125 45, 125
T, (K) 433 433
Too (K) 56 56

peo (kg/m?) 0.03008, 0.04177 | 0.01504, 0.04177

believed to be at or near room temperature. The short run time is assumed to be
insufficient to cause significant heating of the model. The sensitivity of the stability
to small deviations from these assumptions will be discussed.

Distances in this section are expressed using both the axial length x and the arc
length s. STABL uses the arc length for all of its calculations, but the experimentalist
uses . These are related by Equation 5.1, where the cone half angle ¢ is given in

degrees.
90 — ¢ N z — (1 — tan @)
360 cos ¢

forallz > r, (5.1)

s(z) = 2nr,

For a sharp cone, r,, = 0 and Equation 5.1 reduces to s(z) = z/ cos ¢.

Mean flows were computed for all cases using grids with 440 axial points and 350
streamwise points. The outer grid boundary was carefully specified to closely match
the angle of the shock. Stretching was used to cluster the points near the nose and

the body surface. Approximately 100 wall-normal points were contained within the
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Figure 5.1: N factors calculated for Rufer’s blunt cone at 125 psia using two separate

grids.

boundary layer. A second mean flow was calculated using a 440x300 mesh for one
of the cases. Although the outer grid boundary was the same for each grid, different
stretching parameters were used. The second grid had a miminum of 70 points in
the boundary layer. Figure 5.1 shows three sets of N factor calculations using each
of the grids. The results are almost identical, which suggests that the results are
grid independent. The results of this test and those shown in previous chapters were
deemed sufficient to assume grid independence for the other cases calculated in this

chapter.

5.1 Sharp Cones
5.1.1 Sharp Cone: 90 psia

Figure 5.2 shows a comparison of the boundary-layer profiles calculated by STABL

and measured by Rufer at two axial locations. Calibrated hot-wire measurements
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Figure 5.2: A comparison of the mass flux calculated by STABL with the uncal-
ibrated hot wire measurements of Rufer at two locations on the sharp cone at 90

psia.

are needed for a direct comparison between experiment and computation. As of
this writing, only uncalibrated hot-wire measurements have been obtained. As the
hot-wire mean voltage is proportional to the mass flux, a limited comparison can
still be made using these uncalibrated measurements. The height and shape of the
boundary-layer profiles can be compared by adjusting the scales of the computa-
tions and experiments to make the curves fit as well as possible. However, a full
comparison will require calibrated measurements. The height of the hot wire rela-
tive to the cone wall is determined using a telescope and custom-built lens system
that is designed to correct for the optical distortion caused by the thick, curved
plexiglass window. The bias error in the measured heights is estimated to be within
0.15 mm. The distance between successive data points is controlled by the traverse
mechanism, and the error is presumed to be negligible. Measurements were taken

on separate runs to minimize the effect of the pressure drop during the run. For this



83

60 T T

x=2in

40| .

x=20in ]
20 - -1

-0, (1/m)

I 1
0 200 400 600
o (kHz)

Figure 5.3: Amplification rate curves for Rufer’s sharp cone at 90 psia. The spacing

between the curves is two inches.

case, the boundary layer thickness calculated by STABL and measured by Rufer ap-
pear to agree to within the uncertainty in the measurements for both axial locations.
Agreement with the profile shape is good, particularly for the z = 11.75 inch data.
Separate scales are used for the voltage for each axial distance, but for clarity only
the scale for the x = 11.75 inch measurements is shown.

Figure 5.3 shows amplification rate curves calculated by STABL for several axial
locations. As expected, the most unstable frequency decreases as the boundary
layer thickens. The peak amplification rate also decreases with increasing distance
downstream. This trend is similar to that seen in Figures 3.29 and 4.4.

N factor curves for this case are shown in Figure 5.4. Modes with frequencies
higher than 300 kHz are not shown, as they were not necessary to define the N-factor
envelope in the region near transition. Figure 14 in Rufer and Schneider [64] shows
suspected second-mode instabilities at £ = 11.75 inches and x = 14.0 inches but not

at x = 16.7 inches. This is taken as an indication that transition occurred somewhere
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Figure 5.4: N factors for Rufer’s sharp cone at 90 psia. The spacing between the

curves is 10 kHz.

between 14.0 and 16.7 inches, although it should be noted that this may not coincide
with the transition location that would be found using a different detection method.
Using the envelope of the curves shown in Figure 5.4, transition occurred between N
factors of 4.3 and 4.7. The expected transition N factor will be lower for experiments
in the M6LT than for those in Tunnel B because the noise level is higher in smaller
tunnels [10]. Thus, transition N factors less than 5 are not surprising. The most
amplified frequencies calculated by STABL at x = 11.75 inches and z = 14.0 inches
are 220 kHz and 200 kHz. These are within 10% of the peaks on the amplification
curve shown in Figure 14 of Rufer and Schneider [64], which are 235 kHz and 200
kHz, respectively. Table 5.2 summarizes the comparison with Rufer’s data for all of

the cases discussed in this chapter.
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Table 5.2: Comparison of most unstable frequencies calculated by STABL and mea-

sured by Rufer [64]. Transition N factors are also shown for each case.

Case Location (in) | Rufer w (kHz) | STABL w (kHz) | Ny,
11.75 235 220
Sharp 90 4.3-4.7
14.0 200 200
10.3 280 220
Sharp 125 > 5.1
12.3 250 280
Blunt 125 14.25 240 260 > 5.4
18.0 150 140
Blunt 45 3.6-4.0
20.0 130 130
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Figure 5.5: Amplification rate curves for Rufer’s sharp cone at 125 psia. The spacing

between the curves is two inches.
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5.1.2 Sharp Cone: 125 psia

Figures 10 and 11 of Reference [64] show hot-wire spectra on a sharp cone with
an initial driver-tube pressure of 125 psia. Although the cone used in this experiment
was shorter than that used in the others, the same computational grid was used as
for the 90 psia sharp cone. Figure 5.5 shows the amplification rate curves calculated
by STABL for this case, and Figure 5.6 shows the N factors. The computation was
carried out with 10 kHz spacing, but only 20 kHz spacing is shown in the figure for
clarity. Rufer’s frequency spectra show a peak amplitude of approximately 280 kHz
at = 10.3 inches and 250 kHz at x = 12.3 inches. STABL calculates an N factor
of 4.5 at 300 kHz at x = 10.3 inches, and an N of 5.1 at 280 kHz at x = 12.3 inches.
Transition was not observed for this condition, so the transition N factor is presumed

to be greater than 5.1.
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Figure 5.7: A comparison of the mass flux calculated by STABL with the uncali-

brated hot wire measurements of Rufer at z = 14.25 inches on the blunt cone at 125

psia.

5.2 Blunt Cones

5.2.1 Blunt Cone:

125 psia

Figure 5.7 shows a comparison of the boundary-layer profiles measured by Rufer

and computed by STABL for the blunt cone with a 125 psia driver tube pressure.

These measurements were conducted before the telescope system was in place to

increase the accuracy of the hot-wire positioning relative to the cone wall. Thus,

although the distance between Rufer’s points is accurate, the entire set may have a

constant error in the wall normal distance of up to 1 mm. This comparison shows a

boundary-layer calculated by STABL that is approximately 1 mm thinner than that

measured by Rufer. The maximum difference in the profile shape is approximately

20% with respect to the massflux scale. These measurements are being repeated

using the new system to try to resolve these differences.
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Figure 5.10: Frequency spectra measured by Rufer at x = 14.25 inches on the blunt

cone at 125 psia.

Figure 5.8 shows amplification rate curves for every two inches in the range
4 in < x < 18 in. Well defined second mode peaks are present. The bandwidth of
the unstable region is approximately 150 kHz near the nose and 100 kHz farther aft.
Figure 5.9 shows N factor curves for this case. The computation was carried out
with 10 kHz spacing, but only 20 kHz spacing is shown in the figure for clarity. A
clear envelope is evident. N = 5.5 is first reached by a 240 kHz wave at s = 0.388
m (z = 15.2 in).

Figure 5.10 shows frequency spectra measured by Rufer at x = 14.25 inches. A
sharp peak is evident near the boundary-layer edge with no corresponding peak near
the wall. The peak frequency of approximately 240 kHz is close to the frequency with
the highest N factor calculated by STABL, which is 260 kHz at that location. The
frequency calculated by STABL to have the highest amplification rate at x = 14.25
inches is 226 kHz.
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Figure 5.11: A comparison of the mass flux calculated by STABL with the uncali-

brated hot wire measurements of Rufer at two locations on the blunt cone at 45 psia.

5.2.2 Blunt Cone: 45 psia

Figure 5.11 shows a comparison of the boundary layer profiles computed by
STABL and measured by Rufer using the telescope and lens system for the blunt
cone at 45 psia. No discernable difference is present in the computed and measured
boundary layer thicknesses. In addition, the shape of the profiles agrees well, with
a maximum deviation of any point of less than 5%. The same scale is used for both
sets of experimental data.

Figure 5.12 shows amplification rate curves calculated by STABL for several
axial locations. The trend here is slightly different than that seen for the sharp and
blunt cones at 125 psia, in that the largest amplification rate seen is not the most
forward curve. The trends seen in the amplification rate plots for the other cases
are probably caused by the computations not being carried out far enough forward

to capture behavior just aft of the critical point. This should not affect the N factor
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Figure 5.12: Amplification rate curves for Rufer’s blunt cone at 45 psia. The spacing

between the curves is two inches.

calculations, since the high frequency disturbances that begin to amplify first damp
out well before the N factor envelope reaches the transition value. The N factor
calculations were begun far upstream of where the transition-causing modes first
begin to amplify.

Figure 5.13 shows N factors for the blunt cone at 45 psia. Figure 18 in Rufer
and Schneider [64] shows suspected second-mode instabilities at © = 18 inches and
x = 20 inches but not at x = 22 inches, suggesting transition occurred between
20 and 22 inches. Using the curves in Figure 5.13, these locations correspond to
N factors of 3.6 and 3.7. Improved frequency resolution in the computation might
increase the latter number to approximately 4.0. The peaks of the power spectra in
Figure 18 of [64] occur at approximately 150 kHz and 130 kHz. The most amplified
frequencies in Figure 5.13 at those locations are 140 kHz and 130 kHz, respectively.

Agreement is again within 10%.
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Figure 5.13: N factors for Rufer’s blunt cone at 45 psia. The spacing between the

curves is 10 kHz.

Appendix D provides all of the input conditions needed to obtain the mean flow
for this case and the stability results shown in Figure 5.13. Numerical output from

selected points is also tabulated.

5.3 Sensitivity Studies

In order to gauge the effect of the various assumptions made in setting up the
boundary conditions, several cases were analyzed with slight perturbations to the
boundary conditions. The blunt cone at 45 psia was chosen as the baseline case
due to the available high quality experimental data, the fact that all flight vehicles
have some degree of bluntness, and the relative ease of numerical solution of blunt
relative to sharp cones. The test conditions, summarized in Table 5.3, were chosen
to represent a reasonable band of uncertainty in the nominal conditions. Each case

changed only one variable from the baseline values.
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Figure 5.14: N factor curves obtained with various perturbations to nominal bound-

ary conditions for Rufer’s 45 psia blunt cone.
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Table 5.3: Frequencies, N factors, and transition locations for a variety of input

conditions for Rufer’s blunt cone at a nominal driver tube pressure of 45 psia. Fre-

quencies and N factors are for x = 20 inches.

Case | My po (psia) T, B (K) T, (K)|w (kHz) N sy_o5 (mm)
Base | 5.8 45 26 300 130 3.63 340
A 2.7 45 26 300 130 3.47 338
2.9 45 26 300 130 3.47 345
C 0.8 40 26 300 120 3.19 379
D 0.8 35 26 300 110 2.75 438
E 0.8 45 433 300 130 2.82 436
F 0.8 45 26 dist1 130 3.61 339
5[ 2500
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Figure 5.15: N factors and transition locations obtained with various perturbations

to nominal boundary conditions for Rufer’s 45 psia blunt cone.
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Figure 5.14 shows the N factor curves for the six perturbed cases, and the re-
sults are summarized in Table 5.3. Figure 5.15 graphically depicts the N factors
and transition arc lengths shown in Table 5.3. The most amplified frequency and
maximum N factor are taken at x = 20 inches (s = 0.5121 m). A transition arc
length is also given based on an Ny of 2.5. Although this is considerably smaller
than the expected transition N factor, this was the highest round number that was
reached by all of the cases. In future studies of this type, the computational domain
should be extended to ensure that a reasonable transition N factor is reached in the
domain. Although this N factor is low, the envelope curve is reasonably linear, and
the trends should still hold.

Cases A and B represent a small difference in the freestream Mach number. M, is
a function of the area ratio in the tunnel, which changes with p,. Pitot measurements
with the cone in the M6LT showed an approximate range of 5.7 < M., < 5.9, but
values beyond the extremes were also seen. A 2% change in M, caused a 4% change
in the N factor at = 20 inches and a 1% change in the location where N = 2.5.
The stability results do not appear overly sensitive to the freestream Mach number.

Cases C and D represent a change in the tunnel stagnation pressure. The amount
is representative of the typical pressure drop during the course of the run. All of
Rufer’s instability measurements were taken within the first second of the run to
minimize the effects of this pressure drop. A 22% decrease in p, caused a 24%
decrease in N and a 29% increase in s. In addition, this was the only variable which
caused a significant change in the most unstable frequency. Since this perturbation
is not an uncertainty, but rather a natural change in the test conditions, the best
results will be obtained if all measurements are taken at the same time, as is currently
done, rather than using the full test time.

Case E is the result obtained when the freestream vibrational temperature is set
equal to the stagnation temperature. As discussed earlier, if the flow in a wind tun-
nel expands quickly enough, the translational and vibrational energy modes may not

have time to equilibrate. The stagnation temperature in the M6LT is almost 50%
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Figure 5.16: Wall temperature distribution “dist1” used in sensitivity study on

Rufer’s 45 psia blunt cone.

lower than the threshhold value proposed by Bertolotti [57] of 800 K. In addition,
the very long nozzle in the MGLT makes flow relaxation more likely than in a con-
ventionally designed tunnel. However, some degree of thermal nonequilibrium may
be present, and this study will assess the potential effect. The baseline case assumes
full equilibrium, while case E assumes frozen conditions. The effect of the frozen
conditions is a 22% decrease in N and a 28% increase in s. This is a significant
effect, and a computation of the flow of the tunnel should be made to determine the
degree of thermal nonequilibrium present.

Case F was obtained by assuming the wall temperature had the distribution
shown in Figure 5.16. The stagnation point wall temperature was set close to the
freestream stagnation temperature, and the wall temperature was assumed to drop
rapidly and fall below room temperature by the aft end. The actual distribution
was arbitrary, but this was assumed to be a worst-case scenario with respect to the

difference from a constant 300K wall. The effect of this distribution is negligible,
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Figure 5.17: Amplification rate curves at x = 20 inches for baseline and perturbed

boundary conditions.

with less than a 1% effect on both N and s. This suggests that additional effort
does not need to be spent to determine more precisely the actual wall temperature
distribution.

The amplification rate curves at x = 20 inches for the baseline and each of the
perturbed conditions are shown in Figure 5.17. A clear trend of decreasing frequency
and peak amplification rate is evident with increasing Mach number. As with the N
factors, the largest difference from the baseline case is seen with cases C and D, which
correspond to the total pressure drop. This has the effect of thickening the boundary
layer, which decreases the unstable frequency. Interestingly, although freestream
thermal nonequilibrium in case E has a large effect on the N factors compared to the
other cases, the effect on the local amplification rate is small. Almost no difference

is seen for the different wall temperature in case F.
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6. Conclusions

Future systems involving hypersonic flight will require better methods of laminar
to turbulent boundary-layer transition prediction. The current methods, which in
most cases are empirical correlations combined with extrapolation from wind-tunnel
tests, are inadequate to reduce design margins and expand the state of the art.
The semi-empirical e’ method coupled with LST or the PSE shows promise for
some conditions, but these methods have not yet successfully transitioned from the
research to the design setting. The STABL code package is designed to make that
transition, but before it can be used by researchers and accepted by designers, it will
require extensive verification and validation.

STABL and its stability code, PSE-Chem, are currently transforming from an
arcane research code designed for a single type of problem to a user-friendly, broadly-
applicable prediction tool. As the first-ever user from outside the developer’s research
group, the author has been instrumental in suggesting and testing improvements to
the user interface, method of operation, and documentation. Several bugs with
varying degrees of severity have been uncovered. The experiences of the author have
helped STABL’s developers to understand the areas that need to be improved to
make the tool accessible enough for design use. Several cases have been analyzed in
an effort to verify and validate STABL.

The Stetson et al. [33] experiment is the best-known example of second mode wave
growth on a blunt cone. The case has been computed by many other researchers,
which makes it an ideal test case for code verification. Many issues were addressed
to improve the agreement between the results of STABL and those of the other
researchers.

This effort exposed the inadequacy of the method originally implemented in

STABL for computing the viscosity of low-temperature flows, such as those com-
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monly found in hypersonic wind tunnels. Modifications that were made to use a
blended viscosity law improved agreement with experimental data and helped to ex-
tend the applicability of STABL to the low-temperature regime. A related issue was
the use of the proper freestream density. Many CFD codes require a unit Reynolds
number input, but the unit Reynolds number reported in Stetson et al. is not consis-
tent with the other reported quantities if a Sutherland viscosity law is used. Thus,
any researcher that used the unit Reynolds number specified by Stetson et al. as
an input to a code that uses the Sutherland law modeled the flow conditions of the
experiment incorrectly. In addition, the boundary-layer edge detection algorithm
was modified to a more robust scheme which allows it to give an accurate location
even when overshoots in the total enthalpy profile exist. The sensitivity of several
other factors, including grid convergence, wall temperature, user-specified options,
freestream thermal non-equilibrium, normalization, compilers, and PSE-Chem nu-
merical behavior were all also examined.

The transition location predicted by STABL for the 3.81 mm Stetson cone agreed
well with that predicted by other researchers. The location where N = 5.5 is within
about 5% of the other values in the literature. However, when LST is used to cal-
culate the amplification rate at s/r, = 175, STABL calculates a peak amplification
rate that is more unstable than any of the data sets used for comparison. The differ-
ence is approximately equal to the scatter in the other results. Furthermore, when
the viscosity model and method of calculating the freestream density were changed,
the results calculated by STABL shifted by amounts similar to the overall scatter
in the results. This shows a high sensitivity to the physical models employed, and
work should continue in validating these models for various flow regimes. However,
this viscosity-model uncertainty is currently less than the overall uncertainty in the
e method, so this is not a critical issue at this point.

Computations were also conducted to verify the ability of STABL to predict first
mode disturbances. The maximum N factor at the transition location was 12.2,

which is slightly higher than expected. The N factor computed for a single mode
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Malik

differed by 30% compared to a new corresponding calculation using the e code.

Analysis of the eMaik

mean flow using PSE-Chem suggests that the differences could
be caused by differences between the DPLR2D Navier-Stokes solution and the e
similarity solution.

Analysis of an adiabatic large-bluntness cone at Mach 8 showed first-mode am-
plification over most of the body. Second-mode amplification began farther aft at an
edge Mach number of 5.7, but its amplitude rapidly overtook that of the first mode
and became dominant at M, = 6.0. Agreement with the results of Rosenboom et
al. [38] was excellent for first mode transition location and most unstable wave an-
gle, although there was a significant difference in frequency. Second mode transition
frequencies matched to within 3%, and the transition location agreed to within 10%.

Computations were also made to match the ongoing hot-wire experiments of
Rufer in the Purdue Mach 6 Ludwieg Tube. These experiments should provide an
additional source of badly-needed validation data. Good agreement in the boundary
layer shape and thickness is obtained for both blunt and sharp cones when the tele-
scopic height-measurement system is used in the experiments. Agreement between
experiment and computations in the most unstable frequency is within 10% for all
cases shown in Rufer and Schneider [64]. Transition N factors based on locations
inferred from hot-wire spectra ranged from 3.6 to greater than 5.4. This matches the
expected trend that the transition N factors will be lower than in Tunnel B, since
the smaller test section means that the noise intensity will be higher. The transition
N factors decrease as the tunnel stagnation pressure decreases. This matches the
unit Reynolds number effect observed in conventional wind tunnels, which says that
transition Reynolds number decreases as unit Reynolds number decreases [10].

Sensitivity studies were also conducted to gauge the effect of various assump-
tions that were made. A dependence on freestream Mach number was observed, as
a change of 2% in the Mach number caused a 4% change in the N factor at a given
location. The normal change in the driver tube pressure over the course of a tunnel

run caused a 25% change in the N factor and a 15% change in the frequency. This
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reiterates the importance of taking measurements during the same driver-tube pres-
sure window for each run. Freestream thermal non-equilibrium was found to have a
potentially large effect on the stability computations, with a frozen freestream vibra-
tional temperature resulting in a 22% decrease in the N factor, although the actual
degree of freestream thermal nonequilibrium is unknown. Almost no effect was seen
from a different wall temperature distribution.

A general observation is better agreement is found in overall transition locations
computed using different computational methods than in the individual computa-
tions used to create the overall prediction. This was seen in Stetson’s 3.81 mm blunt
cone, where STABL calculated a local amplification rate that was higher than other
researchers’ results, but the predicted transition location fell within the scatter. It

Malik ¢alculated N fac-

was also seen for the sharp cone at Mach 3.5. STABL and e
tors for a single mode that disagreed by 30%, but the transition N factor STABL
calculated was within 15% of the expected range for low disturbance environments.
Since the N factor is an integrated quantity, and determining the transition location
through the N factor envelope involves using many individual growth rates, it seems
logical that this process would tend to smooth out differences in the growth rates.

It is interesting that the N factors seen for the sharp cone at Mach 3.5 were larger
than expected, whereas those seen for Rufer’s cases were smaller than expected. It
is important to remember that the e/ method is semi-empirical. The N factor that
best predicts transition is dependent on freestream noise and other factors, and it
needs to be chosen from comparisons to experimental data. When Malik [61] first
computed the sharp cone case, he appears to have performed a total of seven N factor
calculations. In contrast, twenty-one years of advances in hardware and software
allowed calculation of 480 individual N factors here. It does not seem unreasonable
that this could result in a different transition N factor.

A great deal of progress has been made in transforming STABL from a research
code to a design tool. The computations presented here help to provide confidence

in the ability of STABL to analyze boundary-layer stability and predict transition.
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These results can also serve as a benchmark to allow other researchers using STABL
to verify their method of operation. Additional computations on different cases in a

variety of flow regimes should be performed to further this effort.
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An example script used to run multiple combinations of starting location, fre-

quency, and spanwise wavenumber is given below.

#!/usr/bin/perl

# Reference the pse_scripting library routines

require "../lib/pse_scripting.lib";

# Set the directory in which to store the results
my $od= "/home/trobarge/pseruns/133";
my $pid= $$;

# Set number of processors

my $np=2;

# Set up the parameter space for the test matrix
my Q@sdists= map {$_/50;} (1..3);
my @freqs= map {$_*25;} (1..10);
my @betas= map {$_*1000;} (1..8);

# Set PSE-Chem options to be used for all runs

my %params= (iest_omeg=>0, iftest3=>1, 1lstest3=>0,
flow=>0.2, fhigh=>1.0, istep_march=>1,
mean_flow_file=>"’../out/first145.bin’",

ichem_on=>1, ivib_on=>1, idiff_on=>1);

# Create status file - deletion stops the run

my $statusfile= psechem_statusfile_new(".",’continue’);



print "-- Status file is: $statusfile\n";

# Make the main output directory if it doesn’t already exist
if (1-d $od) {

mkdir ($od) ;

if (1-d $o0d) {

die "Unable to make output directory ’$od’\n";

# Loop over frequencies and set options for each loop
foreach my $f (@fregs) {

$params{omegal}=$f;

$params{omega2}=$f;

# Loop over starting locations and set option for each loop
foreach my $s (@sdists) {

$params{"start_sdist"}= $s;

# Loop over betas and set options for each loop
foreach my $beta (@betas) {
$params{betal0_local}=$beta;

$params{betal_pse}=$beta;

# Name run according to individual parameters

my $run="$f-$s-$beta";

# Options to pass to PSE-Chem solver

my Qoargs= (-np=>$np, -copy_to=>$o0d, -id=>"$run",

109
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-args=>"> $od/psechem. $run.out",

-outdir=>"../out/pserun.$pid.data");

# Pass options to input file and solver and run using library routine
print "-- Running PSE-Chem on case $run\n";
my %ret= psechem_run_solver (-inpfile=>\)params,@oargs) ;

psechem_check_error (Yret) ;

# Check status file to see whether to continue
my $status= psechem_statusfile_check($statusfile);
if ($status="/abort/) {
print "Stopping. Status file contains: $status\\\n";
if (-f $statusfile) {unlink($statusfile);}

exit;

# Remove status file and exit when all runs finished
if (-f $statusfile) {unlink($statusfile);}
print "\n-- Done --\n\n";

exit;
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Appendix B: STABL User’s Guide

This appendix is designed to be a guide to using STABL from a user’s perspective.
It supplements the extensive documentation included with the STABL distribution.
This is believed to be accurate as of July 2005, but since STABL is still under
active development, many of the details provided here may become obsolete, and
the STABL documentation should be considered the authoritative source.

The opinions given in this appendix are my own, and they should not be construed
as those of STABL’s developers. I will describe the lessons I have learned, the way
I used STABL and set up the environment, and in some cases the way I wish I had.
Individual preferences will vary, and I don’t claim to have found the best way to do

everything, so use this as a guide, not as a directive.

B.1 Prerequisites
Hardware

STABL parallelizes very efficiently, allowing it to effectively utilize the resources
of a large cluster supercomputer, but it can also run fully on a single workstation.
This section will summarize my experiences and recommendations.

I was given access to an 812 processor cluster at Sandia National Laboratories,
and I used that computer to run most of my mean flows. I typically used 8-16 pro-
cessors at a time, and grids with 150,000 points would converge in approximately six
hours with no user intervention. If necessary, I could be more aggressive in increas-
ing the CFL number and freezing, and significantly reduce the time to converge, but
this was normally not worth the user-time involved, given the complexity caused by
the batch system and the need for remote operation and file transfers. I also occa-
sionally used the Sandia cluster for PSE-Chem runs, particularly when I ran scripts
involving large numbers of global and local frequencies, since those portions of the

code parallelize well.
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I used a dual processor Symmetric Multi-Processing (SMP) workstation for the
majority of my time with STABL. It was a Dell Precision 650, which was their
largest workstation model at the time it was purchased. The workstation contained
two 3.06 GHz Intel Xeon processors, each with 1 MB of L3 cache. The system had
2 GB of ECC SDRAM and an 80 GB IDE hard drive. Graphics were rendered by
a dual-monitor-capable nVidia QuadroFX 500 graphics card with 128 MB of video
RAM. A CD-RW/DVD drive, 3.5 inch floppy drive, keyboard, and mouse were also
included. No monitors were purchased, as suitable used monitors were available free
of charge from the University. The total cost of the system in May 2004, including
academic and volume pricing, was $2,628.80.

In retrospect, all of the computations presented in this thesis could have been
done on the workstation alone, although the Rufer sensitivity studies would have
taken considerably longer. The mean flows could be obtained in 2-3 days, and
the workstation could still be used for other, less processor-intensive tasks such as
data analysis in the mean time. There would be a significant effect on the system
response time for other tasks, but if the full capability of 4 GB of RAM had been
purchased and the process prioritizing ability of Linux was used, the effect could
be greatly decreased. However, the nature of the work in this thesis was limited
by analysis time, rather than CPU cycles. If, for example, a parametric study was
performed to obtain transition Reynolds numbers for many combinations of flow and
geometry variables, the analysis load for each individual solution would be much
smaller, and CPU cycles would become the limiting factor. Therefore, the necessity
of supercomputer access will probably depend on the manner of usage of STABL.

Irregardless of supercomputer availability, a quality workstation is essential for
intensive use of STABL. The workstation will at a minimum be used for compilation,
post-processing, and data analysis. I found the workstation described above to
be excellent for all of those tasks. A high end graphics card is not necessary for
2D /axisymmetric data visualization, and the reasonably priced card chosen allowed

me to use two monitors to double the effective size of my workspace, which greatly
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increased my productivity. I found the processor speed and amount of RAM fully
adequate for my purposes. Changes I would make now would be to purchase a DVD
writer to assist in data backup and a SCSI hard drive instead of IDE for faster data
transfer.

I found it useful to have a fixed IP address and registered host name. Since I
accessed the Sandia cluster remotely through SSH, this allowed me to connect back
to my workstation from Sandia to transfer files in a single step rather than through
a proxy. In addition, I could connect to the workstation from home in the evenings

and weekends to monitor the status of ongoing computations.

Software

STABL was written in and for a UNIX environment. Many varieties of UNIX are
available; I recommend using Linux if a new system is used. All of my computations
were done using Red Hat Linux 9. The workstation came with Windows loaded;
Linux was installed locally, with Windows retained on a second partition. Other
varieties of UNIX should work fine once initial setup is complete, although there
may be some extra work if this is the first time STABL has been used on that
particular variety. It may be possible to run STABL under Windows using Cygwin,
which is a freely available program that provides a UNIX environment on a Windows
operating system. Currently, this has never been tried extensively, and I would highly
recommend Windows users either use a second computer or create a dual-boot system
with Linux.

STABL is distributed in source form, so C and Fortran compilers are needed to
create the binary executable files. I originally used the GNU compilers, but later
switched to the Portland Group compilers for reasons described in Section 3.2.9. The-
oretically, the Intel compilers should work also, although these have not been used
yet to my knowledge. The Portland Group C and Fortran compilers were down-

loaded from the website and installed on the workstation using the license manager
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option. This was slightly more complicated to set up, but it allowed multiple users
access to the compilers. The details are described in the compiler documentation. A
Perl interpreter is also required for the GUI, scripting capabilities, and many of the
additional utilities. This is usually installed by default on UNIX systems, and a Win-
dows version can be downloaded free of charge from http://www.activestate.com.
The STABL documentation contains detailed information on the installation of ad-
ditional Perl modules that are required.

DPLR2D and PSE-Chem use MPI libraries for message passing between multi-
ple processors. Several versions of MPI are available; I installed the MPICH MPI
libraries, which are freely available online. The LAM MPI libraries were also tested,
and no effect was seen on the results. I found it best to set up the compilers be-
fore setting up the MPI libraries so that the mpif90 and mpicc commands could be
properly configured. The Portland Group website FAQ contains information about
setting up their compilers with MPICH.

The commercial data visualization software Tecplot was used extensively for anal-
ysis of the results. STABL is designed to format its data files to be Tecplot-ready,
although it would not be very difficult to change the source code so that another
formatting is used. A single commercial license of Tecplot currently costs $1600,
and an educational license is approximately $800. Many institutions will have a site
license which would make Tecplot available at no additional cost, as was the case for

me.

Knowledge

STABL is an advanced system, and users more experienced with CFD and tran-
sition prediction will have an easier learning curve than others. In particular, a
working knowledge of CFD principles, as can be gained in an introductory course,
will be very helpful. A user should be reasonably proficient in using the command

line in UNIX. Knowledge of Fortran is only strictly necessary to understand the
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source code, but that would be beneficial, since the code is still under active devel-
opment. A basic knowledge of scripting in Perl is necessary to utilize the advanced
operation methodologies currently being developed. While only basic knowledge in
these areas is necessary to use STABL, more advanced users will be better able to

exploit the full capabilities of the software.

B.2 Method of Operation

The STABL documentation gives a detailed tutorial to allow a user to run a case
with all of the correct options in place. While this is sufficient to teach the new user
how to execute the proper commands, it does not teach why those options were set
and when a user will want to change the defaults. This section is an attempt to fill

that gap with some of the lessons I learned over the course of my time using STABL.

Case Definition

The first step in analyzing is a new case is to gather the relevant information
about that case. What you need depends on your goals for the analysis, but at a
minimum you will need the model geometry, the freestream properties, and the wall
temperature boundary condition. The information needed for the model geometry
depends on the class of problem. For a blunt cone, you will need the nose radius,
the half angle, and the arclength from the sphere-cone tangency point to the end.
For the input conditions, you will need the freestream Mach number or velocity, the
freestream static translational temperature T, the freestream static vibrational
temperature Tv,,, and the freestream density. You will most likely need to calculate
the density from other parameters. Be careful in doing this to ensure you are doing
it in a way that is consistent with the goal of the analysis; see Section 3.2.2 for more
discussion of this. For the wall temperature condition you can specify a constant

temperature, a temperature distribution, radiative equilibrium, or an adiabatic wall.
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You may need other information to make use of the STABL results. If you want
to compare to experiments, you will need data such as the experimental transition
location or the wall temperature or pressure distributions. For transition prediction,
you will need to specify an N factor appropriate for the environment. It would be
helpful to know the relative uncertainty in the various input quantities so that at

least basic sensitivity studies can be performed.

Grid Generation

The first step in the analysis is to generate a grid. I used the STABL GUI to
run the grid generator. The model geometry is used to define the inner boundary.
The outer boundary should be tailored to match the angle of the shock as closely
as possible. At least five or six grid points should stand between the shock and the
domain outer boundary to ensure the shock is well captured.

The problem with matching the grid to the shock shape is that the shock shape
is not known at the outset. To get around this, I recommend using two grids. To
make the first, use the graphs in NACA Report 1135 [65] or Billig’s correlation [66]
to obtain an approximate outer shock angle. Apply a generous margin of error
and create a large, coarse grid that you are sure will completely capture the flow.
Run the solution for this case, which due to the small problem size and low aspect
ratios should converge very quickly. Postprocess the solution and plot Mach number
contours in Tecplot. I like to make the shock the only contour level shown to enhance
the contrast. Then make a second grid that will better match the shock. Read the
grid file into Tecplot and overlay it on the contours. I like to activate only the
contour layer in the original solution and only the mesh or boundary in the new
grid. Now go back to the GUI and make another, better grid that uses the lessons
learned. Continue doing this until your new grid matches the shock shape. I typically
use around ten line segments in constructing the outer grid shape for a blunt cone.

Tecplot macros can make the iterations go much faster. Increase the number of
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points in the second grid. The spacing factors may have to be changed to place
sufficient points within the boundary layer. The boundary-layer thickness can be
approximately determined from the first solution, as well.

After the second grid is created, save your work and run the mean flow solver.
Be sure to check that your grid still matches the shock well and the spacing within

the boundary layer is sufficient in the final solution.

Mean Flow Solution

The next step is to obtain the laminar mean flow. The STABL documentation
gives a good description of how to run the solver. I will focus on how to set up the
problem and various choices that need to be made. Most of the work is in setting
up the input file. Brief descriptions of each of the options are given at the bottom of
the sample file. T will focus on the ones that you are most likely to need to change
from the defaults.

The grid filename is self-explanatory. iwall should be 1 for an adiabatic wall, 2
for an isothermal wall, 3 for a specified distribution, or 4 for radiative equilibrium.
For an isothermal wall, the temperature is specified by Twall, and for a specified
distribution it is given in the file declared as the wall temperature filename.
istop gives the total number of iterations to perform in the run. If you restart from
a previous run, the iteration count resets for the purposes of istop. To restart,
change iconr to 1, ensure that the <BASE>.flow file is in the ../out directory, and
run the solver with the normal command.

The kbl parameter is most likely to be overlooked. In layman’s terms, this tells
the solver at which j value it should toggle a limiter that results in an increase in the
effective viscosity. This should be set to a j value such that is at every 7 beyond the
boundary layer edge but inside of the shock. A suitable value should be determined
when the second grid is created. If this is set to a value within the boundary layer,

discontinuities may appear in the profile derivatives.
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nplot specifies the interval of iterations between writing restart files. I adjust
this based on the problem size and system used so that it writes a restart file every
minute or two. igeom should be set to 1 for a blunt cone or 3 for a sharp cone. ichem
and ivib settings are at your discretion. They should probably both be 1 unless
you are trying to compare to another computation or assess the real gas effects.
The initial CFL number is set through cfl, and subsequent numbers to change to
are listed after the mass fractions. The CFL is changed every ijump iterations.
The freestream conditions and the mass fractions will also need to be set; those are
self-explanatory.

I prefer to run new cases on my workstation first, where I can easily monitor the
progress, start and stop easily, and experiment with different CFL numbers. Once I
have gained confidence that the solution is converging well, I will transfer it to the
cluster, where it runs faster but is much more difficult to monitor.

The mean flow code gives you the option to change the freezing level and CFL
number while it is running. This capability is very useful in a batch-scheduling
system where restarting the job may mean going to the end of the queue. However,
if you increase the CFL number too aggressively, the solution may blow up. For this
reason, I was often overly conservative and would let the solution converge slower
than it needed to. However, I gained the flexibility to let it run unattended and it
would eventually converge.

After the residual has leveled off, you should postprocess it and look for several
factors. First, plot contours of the residual on a logrithmic scale. I used a Tecplot
macro to easily automate this. I always saw slightly higher residuals near the nosetip
in the boundary layer, but other “hot spots” should be examined carefully. Look at
the shock shape to make sure the grid matches the angle while maintaining a reason-
able standoff distance. A good check is to probe at various points outside the shock
to ensure that the freestream values were maintained. I also like to look at velocity
and temperature profiles to ensure that they look reasonable before proceeding to

the stability analysis.
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Stability Analysis

The final step is to complete the stability analysis. This step is particularly
dependent upon the goals for the analysis. Predicting transition is relatively easy.
The walkthrough included with the STABL release gives good examples for obtaining
N factors and LST amplification curves. Almost all of the plots I show in this thesis
were obtained using the PSE scripting routines with setup files modified from the
examples provided. To obtain N factors for transition prediction, I recommend
running a two-parameter test matrix with combinations of frequency and starting
location. For first mode N factors, the § value is a third parameter that must be
varied.

After the runs are completed, use command-line wild-card expansion to load
all of the psealpha files into Tecplot. Plot each of the N factors, and select the
maximum N factors for each frequency. A routine has just been added to STABL to
extract the most unstable modes automatically, but I have not tried it myself. The
predicted transition location will be where the maximum N factor first reaches the
preset value. Amplification rate curves and eigenfunctions can be plotted if desired.
Other work will be determined by the goals of the study.

There are several input file parameters that I change on a regular basis. The pa-
rameters mean_flow_file, start_sdist, iselect_freq, betal0_local, betal_pse,
and iest_omeg are all well explained in the documentation and in the descriptions in
the input file. I vary num_coarse and num_fine depending on the application, but
I rarely increase them over the default values. I normally leave ichem_on, ivib_on,
and idiff_on set to 1 unless I am specifically testing their effect. 1 have not seen
an effect between the various settings of istr, with the exception of the uniform
setting. I normally leave that at 1, since I use high-quality mean flow grids. I use a
bl_method of 3, but you should check to see if the boundary layer edge location is

reasonable. I have experimented with most of the other options, and I recommend
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that other users do the same, but those are the ones I generally considered when

setting up a new case.

B.3 Final Thoughts

Hopefully this users’ guide has filled some of the gaps in the STABL documen-
tation and provided a slightly different perspective on the working of the code. I
would encourage you to ask questions and to try out the many options available.
The PSE-Chem source code is well documented and laid out, so you can often look
directly at that section of the code to learn the differences between the various op-
tions. Take careful notes, and always save your input files. If you have your input
files, you can recreate your data; if you only have your data, you may not be able to

determine how you obtained it. Best wishes.
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Appendix C: Boundary Layer Edge Detection

The edge detection algorithm was modified to account for overshoots in the total
enthalpy profiles. The file STABL/cfd_solver/src/cfd_detect_bl_edge.fpp was

the only file modified. A partial listing of the source code is shown below.

c *x* Total enthalpy method

if (imethod.eq.1) then

hp= rbl_fact
hf= h(nj) ! Freestream value
hw= h(1) I Wall value
hd= abs(hf - hw) I Difference
c ¥x* Initialize variables
jedge =0

ioversht= 0

c *kk First use original method
do j= 1,nj-1
if (abs(h(j)-hw) .ge. hpxhd) then

jedge = j
jfirst= j
exit
endif
enddo

if (jedge.eq.0) goto 999

¢ *xx*x Find out if an overshoot exists



122

do j= jfirst+l,nj
if ((h(j)-hw) .gt. hd/hp) then !overshoot exists
ioversht= 1

endif

*xx Next line makes sure we’re past overshoot and checks the flag
**xx to make sure it isn’t fooled by random fluctuations in the freestream
if (iand(ioversht==1,h(j) .1t. h(j-1))) then
if ((h(j)-hw) .1t. hd/hp) then
jedge= j
exit
endif
endif

enddo



123
Appendix D: Input and Output Data for Rufer’s 45 psia Blunt Cone

This appendix is designed to provide all of the input data needed to recreate the
plot shown in Figure 5.13. The case is Rufer’s blunt cone with a stagnation pressure
of 45 psia. Computations were performed in May 2005 using STABL 1.29.2.

The mean-flow input file is provided in Section D.1. All of the inputs needed for
the GUI elliptical nose grid generator are provided in Table D.1. A script that can
be used to generate the PSE data is printed in Section D.2. Mean-flow output data
is tabulated for several locations in Table D.2. N factors for several frequencies and

locations are printed in Table D.3.

D.1 Mean Flow Input File

! Grid filename,
>../grids/grid_shann150.dat’

! chemistry input filename,
> ../props/air_bsp_88.inp’

! wall temperature filename,
’../inp/twall.inp’

! NASA thermodynamic properties filename

> . ./props/nasa_1996_thermo.dat’

! itvd iorder iextst kmax ivis iwall i2j
-1, 2, -1, 4, 1, 2, 2

I istop iplot iconr iaxi inor isn kbl
50000, 1, -1, 1, 1, 0, 220

! nplot igrid ilt i2n igeom irm iej
100, 1, -1, 5, 1, 1, -1

' ichem ivib itv itl irk iset  icfljmp

1: 1, 1, _1, 1, 1 20
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! machin density Tin Tvin Twall vin rvr
5.80d0, 1.5046d-2, 5.6000d1, 5.6000d1, 3.00d2, 3.06000d3, 1.3d0

! cfl epsi eps] epsk pmul alpha yaw
1.0d-3, 0.3, 0.3, 0.3, 0.5, 0.0d0, 0.0d0

I stime rconv  rfreeze raccel vaccel emisw radrx
10.0 0.5d-7 -1.0 1.0d+5 1.0d+5 0.8d0 0.5d0

! Mass fractions, species order: N2,02,NO,N,O0
.767000
.233000
.000000
.000000

o O O O O

.000000
! List of additional CFL numbers
0.01

0.1

1.

2.

4.

10.

20.

40.

100. , 5
200. , 5
400. , 20
1000.



Table D.1: Grid input conditions for Rufer’s 45 psia blunt cone.

Major (x) nose radius

Minor (y) nose radius

Number of points on nose

Major (x) axis upper grid radius

Minor (y) axis upper grid radius

Upper grid x offset

Number of body-normal points

Nose grid point spacing factor

End grid point spacing factor

Surface-normal stretching type at nose

0.000508 m
0.000508 m

80

.00141
.00120
0.0008

351
0.07
0.09

Exponential

Surface-normal stretching type at end  Exponential

Elliptical smoothing iterations 3

Overlap correction factor 0.30

Normal relaxation factor 0.30
Segment Angle (deg) Length (m) Num Points  Spacing
Lower Segment 1 7 0.0267 150 Automatic
Lower Segment 2 7 0.53808 211 Automatic
Upper Segment 1 35 0.0003 10 Automatic
Upper Segment 2 32.5 0.0002 10 Automatic
Upper Segment 3 30 0.0005 10 Automatic
Upper Segment 4 25 0.0007 10 Automatic
Upper Segment 5 20 0.0012 10 Automatic
Upper Segment 6 18 0.0025 10 Automatic
Upper Segment 7 16 0.006 10 Automatic
Upper Segment 8 14 0.03 10 Automatic
Upper Segment 9 13.1 0.6 281 Automatic

125
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D.2 PSE Script

#!/usr/bin/perl
require "../lib/pse_scripting.lib";
my $od= "/home/trobarge/pseruns/139";
my $pid= $$;
my $np=2;
## Locations at which to start
## Want to be able to specify x distances to match experiments
## and automatically convert them to s distances
## Use general formula for x to s on frustum of sphere-cone
# Set up parameters:
my $Rn=0.000508; # Nose radius in meters
my $phi=7; # Cone half angle in degrees
my Q@xdist= map {$_/2;} (1..16); # Distances to run in inches
my (@sdist);
# Convert phi to radians:
my $pi=3.14159;
my $phirad=$phi*$pi/180;
# Convert each point
foreach my $x (@xdist) {
my $slong=$pi*$Rn/180*(90-$phi)+
($x*.0254-$Rn* (1-sin($phirad) /cos ($phirad)))/cos($phirad) ;
$slong="/([\d\.1{63})/;
push @sdist, $1;
}
## Frequencies to run
my @freqs= map {$_%10;} (1..30);

# Set PSE-Chem parameters
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my %params= (iest_omeg=>0,iftest3=>1,1stest3=>0,
flow=>0.2,fhigh=>2.5,istep_march=>3,
mean_flow_file=>"’../out/shann150.bin’");
# Make the main output directory if it doesn’t already exist
if (1-d $od) {
mkdir ($od) ;
if (1-d $od) {

die "Unable to make output directory ’$od’\n";

}
foreach my $f (@fregs) {
$params{"omegal"}= $f; $params{"omega2"}= $f;
my $count=0;
foreach my $s (@sdist) {
# Identify runs by xdist in inches
my $run="$f-$xdist[$count]";
$params{"start_sdist"}= $s;
my @oargs= (-np=>$np,-copy_to=>$od,
-args=>"> $od/psechem.$run.out",
-id=>$run,-outdir=>"../out/pserun.$pid.data",
-machinefile=>$machines) ;
# Run PSE-Chem
print "-- Running PSE-Chem on run $run\n";
my %ret= psechem_run_solver (-inpfile=>\)params,@oargs) ;
psechem_check_error (%ret) ;

$count++;

exit;
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Table D.2: Selected mean-flow data points for Rufer’s 45 psia blunt cone.

1 j b y u v T rhol
100 100 | 0.000649426 0.00054862 | 166.748 23.6314  302.1  0.00851877
200 100 | 0.00556437 0.00120189 | 169.859 20.8005 304.759 0.00401514
300 100 | 0.153165 0.0200131 | 475.453 58.0136 255.638 0.00494973
400 100 | 0.423942 0.0545917 | 761.355 93.5567 138.664 0.00904155
380 1 0.361808 0.0448739 0 0 300 0.00418237
380 21 0.361782 0.0450876 | 90.1133 11.0512 304.538 0.00412025
380 41 0.361748 0.0453598 | 203.443 24.9148 301.709 0.00415896
380 61 0.361707 0.0456987 | 343.936 42.0663 284.934 0.00440401
380 81 0.361655 0.0461207 | 517.583 63.2922 243.29 0.00515838
380 101 0.36159 0.046646 | 719.269 88.2518 161.753 0.00776011
380 121 0.36151 0.0472999 | 848.891 104.766 72.5221 0.0173031
380 141 0.36141 0.0481142 | 851.67 103.487 67.8951 0.0184762
380 161 0.361286 0.0491279 | 851.916 101.358 67.9034 0.0184585
380 181 0.361131 0.0503899 | 852.243 98.8221 67.8784 0.0184351




Table D.3: Selected PSE N-factor data for Rufer’s 45 psia blunt cone.

W Starting z N factor

(kHz)  (inches) | s=0.1 s=02 s=03 s=04 s=05
100 4.0 0 0.0485344  0.1259  0.240659 0.546947
120 5.0 0 0.0226291 0.159789 0.920884  2.69965
140 1.0 0 0.0422786 0.846723 2.76787  3.2411
160 6.5 0 0.195131  2.03906  2.30514  1.33935
180 0.5 0 0.988848  1.9931  0.857645 0
200 4.0 0 1.50983  0.74352 0 0
220 1.0 0.118642  1.20406 0 0 0
240 1.0 0.333265  0.298658 0 0 0
260 2.5 0.493529 0 0 0 0
280 2.0 0.582963 0 0 0 0
300 1.5 0.288483 0 0 0 0
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